INTRODUCTION

Decoherence is considered as one of the important research areas since 1980s. Quantum decoherence is the Loss of coherence or ordering of the phase angles between the components of a system in quantum computing superposition and the consequence of this is classical or probabilistically additive behavior... (Zurek Today 10 (1991)) Wave function collapse is the reduction of the physical possibilities into a single possibility as seen by observer can appear in quantum decoherence also it justifies the framework and can predict using classical physics as an acceptable approximation... (Namiki and Pascazio 1991). However, decoherence is a mechanism that emerges out quantum stating point also it determines the location of the quantum classical boundary moreover decoherence appear when the quantum system interacts with its environment in a thermodynamically irreversible way and that lead to prevent different factors in the quantum superposition of the system and environments wave function from interfering with each other... (Zurek Today 10 (1991)) Decoherence can be viewed in different ways such as flowing information from the system to the environment lead to lose information this is known as heat bath since each system is losing some of its energetic state because of its surroundings environments... (Kumar, Kiranagi et al. 2012) There is also another view of decoherence that is called isolation; which is the combination of the system and the environment which known as non-unitary therefore the dynamics of the system alone are irreversible also as a result of combination of system and environment the entanglements are generated between them and that will lead to sharing quantum information without transferring these information to the surroundings… (Lidar and Whaley 2003) Describing how the wave function collaps occurs in quantum mechanics called measurement problem. The disability of observing the process directly lead to different interpretations regard quantum mechanics, also it rises too many qustions that each interpretation must answer. However there are some researches provides aprove that the decoherence solved the measurment problem and some other researchers prove the opposite thus in this paper we will make a comparasion between these two different point of views… (Kumar, Kiranagi et al. 2012)

PROBLEM IDENTIFICATION

Decoherence is a real challenge that prevents implementing quantum computers; because the machines rely on undisturbed evolution of quantum coherences… (Chen, Ang et al. 2003), (Flitney and Abbott 2004) Decoherence provides an explanations for the appearance of the wave function collapse it does not generate actual wave function collapse and that is the nature of quantum systems it leaks into the environment and that done by decomposing the component of the wave function from the coherent system and then applying phases to the environment…(Flitney and Abbott 2004) P.W Anderson claimed that decoherence has solved the Quantum measurement problem while S. L Adler prove the opposite…. (Adler 2002) In this paper, we will conduct a comprehensive survey of the different views and experiments to come up with a solution for the relationship between decoherence and measurement problem.

Decoherence is the Solution

Zurek (1991), Tegmark and Wheeler (2001), and Anderson (2001) stated that decoherence has solved the quantum measurement problem by eliminating the necessity for Von Neumann’s wave function collapse postulate. Osvaldo Pessoa Jr. wrote an...