Introduction to Astronomy

Only available on StudyMode
  • Download(s) : 189
  • Published : January 28, 2012
Open Document
Text Preview
AST 101─ Introduction to Astronomy

Final Exam

A. B. Answer ALL questions on your Opscan, using a #2 pencil. Make sure to include your NAME and STUDENT ID. The computer identifies you by your student ID; do not forget to include it. C. D. E. Do NOT mark your date of birth. The exam is CLOSED BOOK. You should not use any books or notes. Time: 2 HOURS and 30 MINUTES.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the ultimate fate of an isolated pulsar? A) As gravity overwhelms the neutron degeneracy pressure, it will explode as a supernova. B) It will spin ever faster, becoming a millisecond pulsar. C) The neutron degeneracy pressure will eventually overwhelm gravity and the pulsar will slowly evaporate. D) As gravity overwhelms the neutron degeneracy pressure, it will become a white dwarf. E) It will slow down, the magnetic field will weaken, and it will become invisible. 2) Which of the following statements about globular clusters is false? A) Globular cluster stars are very metal-poor relative to the Sun. B) Globular cluster stars are more than 12 billion years old. C) Globular clusters are distributed spherically around the Milky Way. D) Globular clusters contain many thousands of stars. E) Globular cluster ages increase with distance from the Milky Way. 3) Which of the following characteristics of stars has the greatest range in values? A) mass B) core temperature C) radius D) surface temperature E) luminosity 4) Which statement best describes the solar neutrino problem? A) Solar neutrinos have been detected, but in fewer numbers than predicted by theoretical models. B) No one understands how it can be possible for neutrinos to be produced in the Sun. C) Our current understanding of fusion in the Sun suggests that all neutrinos should be destroyed before they arrive at the earth, yet neutrinos are being detected. D) Theoretical models predict that neutrinos should be produced in the Sun, but no neutrinos have ever been observed to be coming from the Sun.


AST 101─ Introduction to Astronomy
Refer to this scenario for the following questions:


Lost in Spacetime. Just when you thought it was safe to take final exams . . . a vindictive multi-dimensional being reaches down (up? over? through?) to Earth and pulls you out of the universe. You are thrown back into the universe at a place of this being's choosing, and she permits you to leave only after you have identified your surroundings. You are subject to several of these tests. Through a scientifically unexplainable miracle, you are able to survive in every one of the places you are tested. (Lest you become too comfortable, however, you certainly are able to feel any associated pain due to high temperature, pressure, gravity, etc.) In each case described below, identify your surroundings. In some cases, the surroundings described may exist only during eras of the universe (past or future) other than our own time; in those cases, you should identify both the place and the time where you are located. 5) It sure is bright everywhere; you've been able to travel around a bit, and it's clear that you are not in a star. Yet it is as bright as looking directly at the Sun. In your extensive travels through your current surroundings, you cannot find a single neutral atom anywhere, nor can you find a nucleus besides hydrogen or helium. And, while it is hot (a few thousand degrees Kelvin), it is nowhere near the temperature needed for nuclear fusion. Where are you? A) You are in the central regions of a quasar. B) You are in the universe more than 10100 years in the future. C) You are in the universe during its first 300,000 years. D) You are in an accretion disk around a supermassive black hole. E) You are where the Sun should be located, but about 5 billion years from now. 6) At last you are in a place where the heat and high density are no longer bothering you....
tracking img