Preview

Internal Forces in Beams

Satisfactory Essays
Open Document
Open Document
330 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Internal Forces in Beams
Types of Loads
1- Concentrated load assumed to act at a point and immediately introduce an oversimplification since all practical loading system must be applied over a finite area.

2- Distributed load are assumed to act over part, or all, of the beam and in most cases are assumed to be equally or uniformly distributed.

a- Uniformly distributed load.

a- Uniformly varying load.

Concept of Shear Force and Bending moment in beams:
When the beam is loaded in some arbitrarily manner, the internal forces and moments are developed and the terms shear force and bending moments come into pictures which are helpful to analyze the beams further. Let us define these terms

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3 and is simply supported at two points creating the reactions R1 and R2 respectively. Now let us assume that the beam is to divided into or imagined to be cut into two portions at a section AA. Now let us assume that the resultant of loads and reactions to the left of AA is ?F' vertically upwards, and since the entire beam is to remain in equilibrium, thus the resultant of forces to the right of AA must also be F, acting downwards. This forces ?F' is as a shear force. The shearing force at any x-section of a beam represents the tendency for the portion of the beam to one side of the section to slide or shear laterally relative to the other portion.
Therefore, now we are in a position to define the shear force ?F' to as follows:
At any x-section of a beam, the shear force ?F' is the algebraic sum of all the lateral components of the forces acting on either side of the x-section.

Sign Convention for Shear Force:
The usual sign conventions to be followed for the shear forces have been illustrated in figures 2 and

You May Also Find These Documents Helpful

  • Powerful Essays

    EGR 315 Final Paper

    • 2079 Words
    • 9 Pages

    The shear stress distributing in a beam depends on how Q/b varies as a function of y1. For a beam with a rectangular cross sectional area, subjected to a shear force V and a bending moment M. as a result of the bending moment a normal stress is developed on a cross section, which is compression above the neutral axis and it is tension below the neutral axis. To investigate the shear stress at a distance y1 above the neutral axis. Then dA=bdy, so equation 2 becomes…

    • 2079 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    e- If you exert a horizontal force of 0.20 N on the top surface (parallel to the surface) of a cube of Jell-O 6 cm, and observe a sideways displacement of 5 mm. What is the shear modulus of the Jell-O? (3 points)…

    • 1013 Words
    • 5 Pages
    Good Essays
  • Good Essays

    The theory is that the stress in the bar is uniaxial with the principal stresses being equal to P/A and zero. The strains are biaxial with the maximum being P/AE and the minimum being – νP/AE. The first principal stress and strain will be aligned with the force and the long axis of the bar.…

    • 746 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Better Essays

    Materials Lab Report

    • 1581 Words
    • 7 Pages

    The loading beam (Silicon Carbide) is lowered at 10mm per second onto the plate. The load is applied until the glass breaks against the two supports (also of Silicon Carbide). The values for maximum load and deflection are recorded from the apparatus. Steps 1-4 are repeated for ten different samples. With a piece of emery paper scratch the surface of the glass slides along the width in the centre on one side only of a glass sample (see Figure 2)…

    • 1581 Words
    • 7 Pages
    Better Essays
  • Satisfactory Essays

    τ = shear force vx-area A εx= εy= εz = 0 Strain in rads. γxy= τxyG G =E2(1+v) G = τγ…

    • 536 Words
    • 3 Pages
    Satisfactory Essays
  • Powerful Essays

    Shear stress is a measure of a load on specific area, however differently from tensile stress, shear stress acts coplanar to a material cross section instead of acting perpendicular to the cross section. It is defined as force per unit area just like tensile strength and has the same units. Units: Pa.…

    • 1627 Words
    • 15 Pages
    Powerful Essays
  • Powerful Essays

    Unknown

    • 1652 Words
    • 7 Pages

    Basically, if the two forces each side of the balance point (fulcrum) are equal, the balance will be horizontal. The pointer on the balance indicates this condition. The sample being weighed has a specific mass generating a fixed moment at its fixed position. The moment exerted by the mass on the other side of the fulcrum can be varied according to the position of the sliding weights on the beam, or lever.…

    • 1652 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    Shear modulus is defined as the ration of shear stress to the shear strain. The shear modulus is…

    • 541 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Shear Walls

    • 2396 Words
    • 10 Pages

    Fig.3.2 - Location of Shear Walls Shear walls are most efficient when they align vertically and are supported on…

    • 2396 Words
    • 10 Pages
    Good Essays
  • Better Essays

    such that there was vertical load at the centre of the beam and horizontal load at the top of a…

    • 1039 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    Beam Experiment

    • 890 Words
    • 4 Pages

    To determine the reactions of the beams by (a) the experimental set-up and (b) by using the principles of statics and method of consistent deformation…

    • 890 Words
    • 4 Pages
    Satisfactory Essays
  • Good Essays

    Torsion Sample Questions

    • 811 Words
    • 4 Pages

    Calculate the shear stress τ and the angle of twist ɸ (in degrees) for a steel tube (G =76 GPa) having the cross section shown in figure Q9. The tube has length L = 1.5 m and is subjected to a torque T =10 KN m.…

    • 811 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Simple stresses are expressed as the ratio of the applied force divided by the resisting area or σ = Force / Area. It is the expression of force per unit area to structural members that are subjected to external forces and/or induced forces. Stress is the lead to accurately describe and predict the elastic deformation of a body. Simple stress can be classified as normal stress, shear stress, and bearing stress. Normal stress develops when a force is applied perpendicular to the cross-sectional area of the material. If the force is going to pull the material, the stress is said to be tensile stress and compressive stress develops when the material is being compressed by two opposing forces. Shear stress is developed if the applied force is parallel to the resisting area. Example is the bolt that holds the tension rod in its anchor. Another condition of shearing is when we twist a bar along its longitudinal axis. This type of shearing is called torsion and covered in Chapter 3. Another type of simple stress is the bearing stress, it is the contact pressure between two bodies. Suspension bridges are good example of structures that carry these stresses. The weight of the vehicle is carried by the bridge deck and passes the force to the stringers (vertical cables), which in turn, supported by the main suspension cables. The suspension cables then transferred the force into bridge towers.…

    • 17796 Words
    • 72 Pages
    Good Essays
  • Powerful Essays

    The experiment started with setting the digital force display to zero. Place 100g mass to a hangar. Then place the hangar on the plastic bar below the cut. Record the reading on the digital force display, which is the experimental shear force. Repeat using 200g, 300g, 400g and 500g of…

    • 1818 Words
    • 7 Pages
    Powerful Essays

Related Topics