Inorganic

Only available on StudyMode
  • Download(s) : 66
  • Published : April 21, 2013
Open Document
Text Preview
Experiment 3: Electronic structure, bonding and shape of some simple inorganic molecules. Introduction:
In quantum chemistry, electronic structure is the state of motion of electrons in an electrostatic field created by stationary nuclei. The term encompass both the wave functions of the electrons and the energies associated with them. Electronic structure is obtained by solving quantum mechanical equations for the aforementioned clamped-nuclei problem. Electronic structure problem arise from the Born-Oppenheimer approximation. Along with nuclear dynamics problem, electronic structure problem is one of the two steps to study quantum mechanical motion of a molecular system. Except for a small number of simple problems such as hydrogen-like atoms, the solution of electronic structure problems require modern computers. Electronic structure problem is routinely solved with quantum chemistry computer programs. Electronic structure calculations rank among the most computationally intensive tasks in all scientific calculations. For this reason, quantum chemistry calculations take up significant shares on many scientific supercomputer facilities. A number of methods to obtain electronic structures exist and their applicability varies from case to case.

Part A: Lewis structure

The Lewis structure is used to represent the covalent bonding of a molecule or ion. Covalent bonds are a type of chemical bonding formed by the sharing of electrons in the valence shells of the atoms. Covalent bonds are stronger than the electrostatic interactions of ionic bonds, but keep in mind that we are not considering ionic compounds as we go through this chapter. Most bonding is not purely covalent, but is polar covalent (unequal sharing) based on electronegativity differences. The atoms in a Lewis structure tend to share electrons so that each atom has eight electrons (the octet rule). The octet rule states that an atom in a molecule will be stable when there are eight electrons in its outer shell (with the exception of hydrogen, in which the outer shell is satisfied with two electrons). Lewis structures display the electrons of the outer shells because these are the ones that participate in making chemical bonds. For simple molecules, the most effective way to get the correct Lewis structure is to write the Lewis diagrams for all the atoms involved in the bonding and adding up the total number of valence electrons that are available for bonding. For example, oxygen has 6 electrons in the outer shell, which are the pattern of two lone pairs and two singles. If the electrons are not placed correctly, one could think that oxygen has three lone pairs (which would not leave any unshared electrons to form chemical bonds). After adding the four unshared electrons around element symbol, form electron pairs using the remaining two outer shell electrons.

Incorrect structure correct structure One good example is the water molecule. Water has the chemical formula of H2O, which means there have eight valence electrons (six from oxygen and one from each hydrogen). With few exceptions, hydrogen atoms are always placed on the outside of the molecule, and in this case the central atom would be oxygen. Each of the two unpaired electrons of the oxygen atom will form a bond with one of the unpaired electrons of the hydrogen atoms. The bonds formed by the shared electron pairs can be represented by either two closely places dots between two element symbols or more commonly by a straight line between element symbols:

Part B: VSEPR Theory
VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of atoms about a central atom in a covalent compound, or charged ion, is determined solely by the repulsions between electron pairs present in the valence shell of the central atom.The number of electron pairs around the central atom can be determined by writing...
tracking img