1. Alice throws the ball to the +X direction with an initial velocity 10m/s. Time elapsed during the motion is 5s, calculate the height that object is thrown and Vy component of the velocity after it hits the ground.

2. John kicks the ball and ball does projectile motion with an angle of 53º to horizontal. Its initial velocity is 10 m/s, find the maximum height it can reach, horizontal displacement and total time required for this motion. (sin53º=0, 8 and cos53º=0, 6)

3. The boy drops the ball from a roof of the house which takes 3 seconds to hit the ground. Calculate the velocity before the ball crashes to the ground. (g=10m/s²)

4. John throws the ball straight upward and after 1 second it reaches its maximum height then it does free fall motion which takes 2 seconds. Calculate the maximum height and velocity of the ball before it crashes the ground. (g=10m/s²)

5. An object does free fall motion. It hits the ground after 4 seconds. Calculate the velocity of the object after 3 seconds and before it hits the ground. What can be the height it is thrown?

6. Calculate the velocity of the car which has initial velocity 24m/s and acceleration 3m/s² after 15 second.

7. The car which is initially at rest has an acceleration 7m/s² and travels 20 seconds. Find the distance it covers during this period.

8. An airplane accelerates down a runway at 3.20 m/s2 for 32.8 s until is finally lifts off the ground. Determine the distance traveled before takeoff.

9. Upton Chuck is riding the Giant Drop at Great America. If Upton free falls for 2.6 seconds, what will be his final velocity and how far will he fall?

10. A car starts from rest and accelerates uniformly over a time of 5.21 seconds for a distance of 110 m. Determine the acceleration of the car.

11. A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. Determine the acceleration of the car and the distance traveled.

...released until it strikes
the ground.
4. The time it takes for the ball to hit the
ground depends on v0 , g and h.
004 10.0 points
The velocity of a projectile at launch has a
horizontal component vh and a vertical component vv . When the projectile is at the highest point of its trajectory, identify the vertical
and the horizontal components of its velocity
and the vertical component of its acceleration.
Consider air resistance to be negligible.
4. It...

...contains only vector quantities?
A. mass, time
B. force, velocity
C. time, momentum
D. acceleration, speed
2. An airplane heads due north with an airspeed of 75 m/s. The wind is blowing due west at 18 m/s. What is the airplane’s speed relative to the ground?
A. 57 m/s
B. 73 m/s
C. 77 m/s
D. 93 m/s
3. Two velocity vectors, v1 and v2 are shown.
Which of the following best represents the resultant of the addition of the two velocity...

...motion (1-D) with constant (uniform) velocity with constant (uniform) acceleration, e.g. free fall motion Projectile motion (2-D) x-component (horizontal) y-component (vertical)
2
Learning Outcome:
2.1 Linear Motion (2 hour) www.kmph.matrik.edu.my
At the end of this chapter, students should be able to: Define and distinguish between i) distance and displacement, ii) speed and velocity, iii) instantaneous velocity, average...

...on a computer screen has a position of r = [4 cm + (2.5 cm/s2)t2]i + (5 cm/s)t j.
a) Find the magnitude and direction of the dot’s average velocity between t = 0 and t = 2 s.
b) Find the magnitude and direction of the instantaneous velocity at t = 0, t = 1 s, nd t = 2 s.
c) Sketch the dot’s trajectory from t = 0 to t = 2 s, and show the velocities calculated in part (b).
(a) Identify and Set Up: From [pic] we can calculate x and y for...

...how is time, t related to the inclination of the track? Explain why?
Time and position of velocity are interrelated to each other and the height and gravitational pull affects the acceleration of a moving and a free falling object.
3. From the data obtained, how would you account the difference between the picket fence’s acceleration and the value of g?
The value of the slope of a graph of average velocity versus time will be the acceleration due to gravity of...

...along the circle, then:(a) its velocity changes but speed remains the same (b) its speed changes but velocity remains the same (c) both speed and velocity changes (d) both speed and velocity remains same 4. Which of the following statements is correct? (a) speed distance are scalar, velocity and displacement are vector (b) speed distance are vector, velocity and displacement are vector (c) speed and...

...Exercises for Chapter 1 Kinematics
1. An impulsive retarding force of 3 seconds duration acts on a particle which is moving with a forward velocity of 60 m/s. The oscilloscope record of the deceleration is shown. Determine the approximate velocity of the particle at t = 9 s. [answer: -58 m/s] 2. A car can decelerate at 0.8 ‘g’ on a certain road. Find the total emergency stopping distance measured from the point where the driver first sights the danger for a speed...

...1.
Two ships P and Q are moving along straight lines with constant velocities. Initially P is at a point O and the position vector of Q relative to O is (6i + 12j) km, where i and j are unit vectors directed due east and due north respectively. The ship P is moving with velocity 10j km h–1 and Q is moving with velocity (−8i + 6j) km h−1. At time t hours the position vectors of P and Q relative to O are p km and q km respectively. (a) (b) (c) Find p...