Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum Mean 20 0 3.560 0.106 0.476 2.600 3.225 3.550 3.775 4.500 Median 20 0 3.600 0.169 0.754 2.000 3.000 3.500 4.000 5.000

Calculating Confidence Intervals for one Variable

One-Sample T: Sleep

Variable N Mean StDev SE Mean 95% CI
Sleep 20 6.950 1.572 0.352 (6.214, 7.686)

One-Sample T: Sleep

Variable N Mean StDev SE Mean 99% CI
Sleep 20 6.950 1.572 0.352 (5.944, 7.956)

Short Answer Writing Assignment

All answers should be complete sentences.

1. When rolling a die, is this an example of a discrete or continuous random variable? Explain your reasoning.

It is a discrete since rolling a die, we only have a 1/6 chances when rolling a number. Besides, it is always a concrete number it is never a 1.0001 chances, 1.00000001, or 1.00001, or anything between.|

2. Calculate the mean and standard deviation of the probability distribution created by rolling a die. Either show work or explain how your answer was calculated.

Descriptive Statistics: Die1 Variable Mean StDevDie1 3.450 1.317Mean: 3.50Standard deviation: 1.317I calculated by using the minitab and going into the Stat > Basic Statistics > Display Descriptive Statistics > Variables than select the C14 (Die1) > below enter the statistics and check mark only mean and standard deviation > enter OK twice than you get the answer for the mean and...

...Statistics – Lab #6
Name:_______________________
Statistical Concepts:
• Data Simulation
• Discrete Probability Distribution
• Confidence Intervals
Calculations for a set of variables
Open the class survey results that were entered into the MINITAB worksheet.
We want to calculate the mean for the 10 rolls of the die for each student in the class. Label the column next to die10 in the Worksheet with the word mean. Pull up Calc > RowStatistics and select the radio-button corresponding to Mean. For Input variables: enter all 10 rows of the die data. Go to the Store result in: and select the mean column. Click OK and the mean for each observation will show up in the Worksheet.
We also want to calculate the median for the 10 rolls of the die. Label the next column in the Worksheet with the word median. Repeat the above steps but select the radio-button that corresponds to Median and in the Store results in: text area, place the median column.
Mean Median
3.2 3.5
4.5 5.0
3.7 4.0
3.7 3.0
3.1 3.5
3.6 3.5
3.1 3.0
3.6 3.0
3.8 4.0
2.6 2.0
4.3 4.0
3.5 3.5
3.3 3.5
4.1 4.5
4.2 5.0
2.9 2.5
3.5 4.0
3.7 3.5
3.5 3.0
3.3 4.0
Calculating Descriptive Statistics
Calculate descriptive statistics for the mean and median columns that where created above. Pull up Stat > Basic Statistics > Display Descriptive Statistics and set Variables: to...

...Statistics – Lab #6
Name:__________
Statistical Concepts:
* Data Simulation
* Discrete Probability Distribution
* Confidence Intervals
Calculations for a set of variables
Answer:
Calculating Descriptive Statistics
Answer:
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Mean 20 0 3.560 0.106 0.476 2.600 3.225 3.550 3.775 4.500
Median 20 0 3.600 0.169 0.754 2.000 3.000 3.500 4.000 5.000
Calculating Confidence Intervals for one Variable
Answer:
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Mean 20 0 3.560 0.106 0.476 2.600 3.225 3.550 3.775 4.500
Median 20 0 3.600 0.169 0.754 2.000 3.000 3.500 4.000 5.000
Short Answer Writing Assignment
All answers should be complete sentences.
1. When rolling a die, is this an example of a discrete or continuous random variable? Explain your reasoning.
Rolling a die is a discrete random variable. The random variable can take values like X = 1,2,3,4,5,6 which will always be number and can never be 1.0001 or 1.99 etc. |
2. Calculate the mean and standard deviation of the probability distribution created by rolling a die. Either show work or explain how your answer was calculated.
Mean: 3.5 Standard deviation: 1.7I calculated by using the excel- x | P(x) | Mean | (x^2*P(x)) |...

...Elementary StatisticsiLabWeek6
Statistical Concepts:
* Data Simulation
* Discrete Probability Distribution
* Confidence Intervals
Calculations for a set of variables
Mean Median
3.2 3.5
4.5 5.0
3.7 4.0
3.7 3.0
3.1 3.5
3.6 3.5
3.1 3.0
3.6 3.0
3.8 4.0
2.6 2.0
4.3 4.0
3.5 3.5
3.3 3.5
4.1 4.5
4.2 5.0
2.9 2.5
3.5 4.0
3.7 3.5
3.5 3.0
3.3 4.0
Calculating Descriptive Statistics
Descriptive Statistics: Mean, Median
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Mean 20 0 3.560 0.106 0.476 2.600 3.225 3.550 3.775 4.500
Median 20 0 3.600 0.169 0.754 2.000 3.000 3.500 4.000 5.000
Calculating Confidence Intervals for one Variable
One-Sample T: Sleep
Variable N Mean StDev SE Mean 95% CI
Sleep 20 6.950 1.572 0.352 (6.214, 7.686)
One-Sample T: Sleep
Variable N Mean StDev SE Mean 99% CI
Sleep 20 6.950 1.572 0.352 (5.944, 7.956)
Short Answer Writing Assignment
All answers should be complete sentences.
1. When rolling a die, is this an example of a discrete or continuous random variable? Explain your reasoning.
It is a discrete random variable because the values of the variable is 1 of the 6 values in the set (1,2,3,4,5,6), Since this set is infinite, the random variable is discrete. |...

...STATISTICS - Lab #6
Statistical Concepts:
Data Simulation
Discrete Probability Distribution
Confidence Intervals
Calculations for a set of variables
Open the class survey results that were entered into the MINITAB worksheet.
We want to calculate the mean for the 10 rolls of the die for each student in the class. Label the column next to die10 in the Worksheet with the word mean. Pull up Calc > Row Statistics and select the radio-button corresponding to Mean. For Input variables: enter all 10 rows of the die data. Go to the Store result in: and select the mean column. Click OK and the mean for each observation will show up in the Worksheet.
We also want to calculate the median for the 10 rolls of the die. Label the next column in the Worksheet with the word median. Repeat the above steps but select the radio-button that corresponds to Median and in the Store results in: text area, place the median column.
Calculating Descriptive Statistics
Calculate descriptive statistics for the mean and median columns that where created above. Pull up Stat > Basic Statistics > Display Descriptive Statistics and set Variables: to mean and median. The output will show up in your Session Window. Print this information.
Calculating Confidence Intervals for one Variable
Open the class survey results that were entered into the MINITAB worksheet.
We are...

...
Contents
Question 1 3
Question 2a 5
Question 2b 6
Question 2c 7
Question 3a 8
Question 3b 8
Question 3c 10
Question 3d 11
Question 4 12
Question 5 14
References 15
Question 1
The sampling method that Mr. Kwok is using is Stratified Random Sampling Method. In this case study, Mr Kwok collected a random sample of 1000 flights and proportions of three routes in the sample. He divides them into different sub-groups such as satisfaction, refreshments and departure time and then selects proportionally to highlight specific subgroup within the population. The reasons why Mr Kwok used this sampling method are that the cost per observation in the survey may be reduced and it also enables to increase the accuracy at a given cost.
TABLE 1: Data Summaries of Three Routes
Route 1
Route 2
Route 3
Normal(88.532,5.07943)
Normal(97.1033,5.04488)
Normal(107.15,5.15367)
Summary Statistics
Mean
88.532
Std Dev
5.0794269
Std Err Mean
0.2271589
Upper 95% Mean
88.978306
Lower 95% Mean
88.085694
N
500
Sum
44266
Summary Statistics
Mean
97.103333
Std Dev
5.0448811
Std Err Mean
0.2912663
Upper 95% Mean
97.676525
Lower 95% Mean
96.530142
N
300
Sum
29131
Summary Statistics
Mean
107.15
Std Dev
5.1536687
Std Err Mean
0.3644194
Upper 95% Mean...

...iLab, Week #6
CRUDE OIL DISTILLATION
Introduction
The purpose of this lab was to see how temperature changes the chemical properties of crude oil and how heat distills the crude oil. The boiling points of organic compounds can provide important information regarding other physical properties. The distillation of a substance is based on the boiling points. When the crude oil is brought to a boil (275 °C), the gasoline and kerosene are distilled, but the lubricant remains a part of the crude oil.
Procedure
1) From the Equipment menu, select Distillation Equipment and obtain a 100 mL Round Bottom Flask.
2) Click on the flask and select Distillation Equipment from the Equipment menu. Obtain the Heating Mantel.
3) Obtain the Distillation Head, the Condenser, and the Distillation take-off.
4) Obtain a 100 mL Graduated Cylinder and place it under the Distillation take-off (To set the Thermometer for Celsius or Fahrenheit, select Equipment under the ChemLab Options menu).
5) With the entire apparatus selected, activate the Chemicals dialog box from either the ChemLab Chemicals menu. Add 50 mL of Crude Oil to the Round Bottom Flask.
6) Turn the Mantel transformer to 100% from the ChemLab Options menu and allow the ceramic mantle to heat up. Once the crude oil starts to boil, reduce the transformer to about 60%. Maintain a level of heating so that a continuous drop-wise flow runs into the graduated cylinder (A rate...

...Evaluate and Solve Common Security-Related Problems
Introduction
Guidelines: It’s always best to introduce a paper to the reader. It sets the tone and provides an overview of what will be covered and what the goals are.
• What is the intent of the lab? What issues are addressed? Why is it important? What are the goals?
Specific questions from iLab
Guidelines: Minimum one paragraph; best practice is two or more paragraphs. Always use complete college-level sentences.
Scenario 1
1. Discuss how changing the type of antennas affects the amount of signal spilling outside the building? What are your recommendations?
In this situation if the campus is using Omni-directional antennas and we are getting a significant amount of spillage, it is a problem that could be related to using Omni-directional antennas. With the antenna signal spilling out much farther than it needs to go in any given direction. It could be a situation where directional antennas in certain spots may have created a much better signal area without there being significant amount of spillage.
2. Discuss how relocating the access points to a different part of the building affects the amount of signal spilling outside the building. What are your recommendations?
With the Access points being located in different areas of the building it helps reduce the signal for outside. The weaker the signal out the harder for someone to infiltrate the signal and try to compromise the wireless...