# Ib Matme Sl1 2010

**Topics:**Critical point, Analytic geometry, Stationary point

**Pages:**9 (1117 words)

**Published:**May 5, 2013

22107303

mathematics staNDaRD level PaPeR 1 Wednesday 5 May 2010 (afternoon) 1 hour 30 minutes iNSTrucTioNS To cANdidATES Write your session number in the boxes above. not open this examination paper until instructed to do so. do are not permitted access to any calculator for this paper. You Section A: answer all of Section A in the spaces provided. Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided. At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet. unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. 0 0 candidate session number

2210-7303

11 pages © international Baccalaureate organization 2010

0111

–2–

M10/5/MATME/SP1/ENG/TZ1/XX

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Section a Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary. 1. [Maximum mark: 7] Let f ( x) = 8 x − 2 x 2 . Part of the graph of f is shown below.

(a) (b)

Find the x-intercepts of the graph. (i) (ii) Write down the equation of the axis of symmetry. Find the y-coordinate of the vertex.

[4 marks]

[3 marks]

.................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... 2210-7303

0211

–3– 2. [Maximum mark: 6] 2 1 3 2 and P = 3 . Let W = 2 0 1 1 0 1 3 (a) (b) Find WP. 26 Given that 2WP + S = 12 , find S. 10

M10/5/MATME/SP1/ENG/TZ1/XX

[3 marks] [3 marks]

.................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... .................................................................... ....................................................................

2210-7303

turn over

0311

–4– 3. [Maximum mark: 6] (a) (b) Expand (2 + x) 4 and simplify your result. 1 Hence, find the term in x 2 in (2 + x) 4 1 + 2 . x

M10/5/MATME/SP1/ENG/TZ1/XX

[3 marks] [3 marks]

.................................................................... .................................................................... .................................................................... .................................................................... .......................................................................

Please join StudyMode to read the full document