How Water is Purified in Water Treatment Plants

Topics: Water, Chlorine, Water purification Pages: 10 (3541 words) Published: February 27, 2011
How water is purified in water treatment plants
1. Pumping and containment – The majority of water must be pumped from its source or directed into pipes or holding tanks. To avoid adding contaminants to the water, this physical infrastructure must be made from appropriate materials and constructed so that accidental contamination does not occur. 2. Screening (see also screen filter) – The first step in purifying surface water is to remove large debris such as sticks, leaves, trash and other large particles which may interfere with subsequent purification steps. Most deep groundwater does not need screening before other purification steps. 3. Storage – Water from rivers may also be stored in bankside reservoirs for periods between a few days and many months to allow natural biological purification to take place. This is especially important if treatment is by slow sand filters. Storage reservoirs also provide a buffer against short periods of drought or to allow water supply to be maintained during transitory pollution incidents in the source river. 4. Pre-conditioning – Water rich in hardness salts is treated with soda-ash (sodium carbonate) to precipitate calcium carbonate out utilising the common-ion effect. 5. Pre-chlorination – In many plants the incoming water was chlorinated to minimise the growth of fouling organisms on the pipe-work and tanks. Because of the potential adverse quality effects (see chlorine below), this has largely been discontinued.[citation needed] [edit]pH adjustment Distilled water has a pH of 7 (neither alkaline nor acidic) and sea water has an average pH of 8.3 (slightly alkaline). If the water is acidic (lower than 7), lime, soda ash, or sodium hydroxide is added to raise the pH. For somewhat acidic waters (lower than 6.5)[citation needed], forced draft degasifiers are the cheapest way to raise the pH, as the process raises the pH by stripping dissolved carbon dioxide (carbonic acid) from the water. Lime is commonly used for pH adjustment for municipal water, or at the start of a treatment plant for process water, as it is cheap, but it also increases the ionic load by raising the water hardness. Making the water slightly alkaline ensures that coagulation and flocculation processes work effectively and also helps to minimize the risk of lead being dissolved from lead pipes and lead solder in pipe fittings. Acid (HCl or H2SO4) may be added to alkaline waters in some circumstances to lower the pH. Having alkaline water does not necessarily mean that lead or copper from the plumbing system will not be dissolved into the water but as a generality, water with a pH above 7 is much less likely to dissolve heavy metals than water with a pH below 7. Flocculation is a process which clarifies the water. Clarifying means removing any turbidity or colour so that the water is clear and colourless. Clarification is done by causing a precipitate to form in the water which can be removed using simple physical methods. Initially the precipitate forms as very small particles but as the water is gently stirred, these particles stick together to form bigger particles. Many of the small particles that were originally present in the raw water adsorb onto the surface of these small precipitate particles and so get incorporated into the larger particles that coagulation produces. In this way the coagulated precipitate takes most of the suspended matter out of the water and is then filtered off, generally by passing the mixture through a coarse sand filter or sometimes through a mixture of sand and granulatedanthracite (high carbon and low volatiles coal). Coagulants / flocculating agents that may be used include: 1. Iron (III) hydroxide. This is formed by adding a solution of an iron (III) compound such as iron(III) chloride to pre-treated water with a pH of 7 or greater. Iron (III) hydroxide is extremely insoluble and forms even at a pH as low as 7. Commercial formulations of iron...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Water Treatment Plants Essay
  • Water Treatment Essay
  • Essay about Water
  • water treatment Essay
  • water treatment Research Paper
  • Water Treatment Plant Essay
  • water Essay
  • Water Essay

Become a StudyMode Member

Sign Up - It's Free