Webster's Collegiate Dictionary defines π as "1: the 16th letter of the Greek alphabet... 2 a: the symbol pi denoting the ratio of the circumference of a circle to its diameter b: the ratio itself: a transcendental number having a value to eight decimal places of 3.14159265"

A number can be placed into several categories based on its properties. Is it prime or composite? Is it imaginary or real? Is it transcendental or algebraic? These questions help define a number's behavior in different situations. In order to understand where π fits in to the world of mathematics, one must understand several of its properties: π is irrational and π is transcendental.

The History of π

In the long history of the number π, there have been many twists and turns, many inconsistencies that reflect the condition of the human race as a whole. Through each major period of world history and in each regional area, the state of intellectual thought, the state of mathematics, and hence the state of π, has been dictated by the same socio-economic and geographic forces as every other aspect of civilization. The following is a brief history, organized by period and region, of the development of our understanding of the number π.

In ancient times, π was discovered independently by the first civilizations to begin agriculture. Their new sedentary life style first freed up time for mathematical pondering, and the need for permanent shelter necessitated the development of basic engineering skills, which in many instances required a knowledge of the relationship between the square and the circle (usually satisfied by finding a reasonable approximation of π). Although there are no surviving records of individual mathematicians from this period, historians today know the values used by some ancient cultures. Here is a sampling of some cultures and the values that they used: Babylonians - 3 1/8, Egyptians - (16/9)^2, Chinese - 3, Hebrews - 3 (implied in the Bible, I...

...Before I talk about the history of Pi I want to explain what Pi is. Webster's Collegiate Dictionary defines Pi as "1: the 16th letter of the Greek alphabet... 2 a: the symbol pi denoting the ratio of the circumference of a circle to its diameter b: the ratio itself: a transcendental number having a value to eight decimal places of 3.14159265" A number can be placed into several categories based on its properties. Is it prime or composite? Is it imaginary or real? Is it transcendental or algebraic? These questions help define a number's behavior in different situations. In order to understand where Pi fits in to the world of mathematics, one must understand several of its properties pi is irrational and pi is transcendental.
A rational number is one that can be expressed as the fraction of two integers. Rational numbers converted into decimal notation always repeat themselves somewhere in their digits. For example, 3 is a rational number as it can be written as 3/1 and in decimal notation it is expressed with an infinite amount of zeros to the right of the decimal point. 1/7 is also a rational number. Its decimal notation is 0.142857142857…, a repetition of six digits. However, the square root of 2 cannot be written as the fraction of two integers and is therefore irrational.
For many centuries prior to the actual proof, mathematicians had thought...

...The History of Pi
The History of Pi
Most individuals who have a general mathematical education that touches on the basics of geometry commonly know pi. The definition of pi is the ratio of the circumference to the diameter of the circle (Smoller, 2001). The majority of the population, however, does not realize the history associated with the symbol, which not only spans throughout the centuries but throughout the millenniums. The Babylonians, Egyptians, Archimedes of Syracuse, Leonardo of Pisa, Francois Viete, Leonhard Euler, Asian mathematicians such as Liu Hiu, Tsu Ch’ung-Chih, Arya Bhatta, Gottfried Leibniz, Isaac Newton, William Jones, John Machin. George Buffon and Srinivasa Ramanujan, have all played a role in the enriched past of this important mathematical symbol.
The ancient Babylonians dates back to the 18th century BCE and reigned in Mesopotamia. The Babylonia, even though it declined drastically in the 17th century, existed until 539 when the Persians consumed Babylonia (Kjeilen, 2009). During this time, they made magnificentstructures with archways that held religious emphasis. The Babylonians used a developed mathematical system, which included six as the root number as opposed to 10 which are commonly used today (Kjeilen, 2009). Even though the Babylonians has a variation on their mathematical system, they calculated the area of a circle by taking three...

...The History of Pi
Throughout the history of mathematics, one of the most enduring challenges has been the calculation of the ratio between a circle's circumference and diameter, which has come to be known by the Greek letter pi. From ancient Babylonia to the Middle Ages in Europe to the present day of supercomputers, mathematicians have been striving to calculate the mysterious number. They have searched for exact fractions, formulas, and, more recently, patterns in the long string of numbers starting with 3.14159 2653..., which is generally shortened to 3.14. William L. Schaaf once said, "Probably no symbol in mathematics has evoked as much mystery, romanticism, misconception and human interest as the number pi" (Blatner, 1). We will probably never know who first discovered that the ratio between a circle's circumference and diameter is constant, nor will we ever know who first tried to calculate this ratio. The people who initiated the hunt for pi were the Babylonians and Egyptians, nearly 4000 years ago. It is not clear how they found their approximation for pi, but one source (Beckman) makes the claim that they simply made a big circle, and then measured the circumference and diameter with a piece of rope. They used this method to find that pi was slightly greater than 3, and came up with the value 3 1/8 or 3.125 (Beckmann, 11). However, this theory is...

...History of Pi
There are many people who have discovered and proved what pi is. As time goes on people discover more and more of the seemingly random numbers. Four of the people who proved pi are the Liu Hui, Archimedes of Syracuse, James Gregory, and the Bible.
The first proof I will be talking about is Liu Hui’s. Liu Hui was a Chinese mathematician whose method for proving pi was to find the area of a polygon inscribed in a circle. When the number of sides on the inscribed polygon increased, its area became closer to the circumference of a circle and pi. For finding the side length of an inscribed polygon Liu Hui used a simple formula. (13Ma3)
To find the side length of an inscribed polygon of 2n sides, if the side length of a polygon with n sides is known he used the following formula:
In this formula k stands for a temporary variable, and Sn stands for the side length of an inscribed polygon with n sides. (13Ma3)
We will start with a hexagon inside of a circle. The radius of the circle is one, the area is pi. The side length of the hexagon is 1. To calculate the next k value, all we need to do is do an addition and a square root like in the following:
The area of a regular polygon is A=1/2nsa. The n stands for number of sides, s stands for side length, and a stands for apothem. As the number of sides increases, the apothem becomes closer and closer to...

...Paper - I
1. Sources: Archaeological sources:Exploration, excavation, epigraphy, numismatics, monuments Literary sources: Indigenous: Primary and secondary; poetry, scientific literature, literature, literature in regional languages, religious literature. Foreign accounts: Greek, Chinese and Arab writers.
2. Pre-history and Proto-history: Geographical factors; hunting and gathering (paleolithic and mesolithic); Beginning of agriculture (neolithic and chalcolithic).
3. Indus Valley Civilization: Origin, date, extent, characteristics, decline, survival and significance, art and architecture.
4. Megalithic Cultures: Distribution of pastoral and farming cultures outside the Indus, Development of community life, Settlements, Development of agriculture, Crafts, Pottery, and Iron industry.
5. Aryans and Vedic Period: Expansions of Aryans in India. Vedic Period: Religious and philosophic literature; Transformation from Rig Vedic period to the later Vedic period; Political, social and economical life; Significance of the Vedic Age; Evolution of Monarchy and Varna system.
6. Period of Mahajanapadas: Formation of States (Mahajanapada): Republics and monarchies; Rise of urban centres; Trade routes; Economic growth; Introduction of coinage; Spread of Jainism and Buddhism; Rise of Magadha and Nandas. Iranian and Macedonian invasions and their impact.
7. Mauryan Empire: Foundation of the Mauryan Empire, Chandragupta, Kautilya and Arthashastra; Ashoka;...

...wRGEARJGNEJRLK HREJKH ERN GREKGERgkwergwEGJ WJRE GWKJER GWKERGKWERJG KW EJRGKJEW GEWKJG WJKEW tgkjE WGWEwejk GREJkgerkah earh jkearherakjh earkjh earkjh eraljherajl heral jhreajl heraj lheralj heralj her jlheraljh earh erah teh eat haahearh erah eath eath eta heth urhgqaehg isodghsdouihgaeuhwrg rwlnslnsdlgnetlnlsnrlgneorignerg eth yrh yr wehfb ygrwugy wrghrGrigirGW BER GBR TB AD B ADB RTAH ART HBAED TH ATEH ERTA HET AH RTH AER G ERAG ERA GE RAG REA GYA ER TRE HG R gera ha terh aerh brt h erag er yht hqrajgkjjern jkwrbn rejk bkrjw r wgj rg hgr kgh jurghurghrgr guhrg uh rg huri i hur uh o rgoh h hgeohuwfeuhwf hewouu rwoeqoiew uowefh uwrugowfeugwfe ugo wefugo uwegf ugowfe guoewfugwfe guwegufew guwfe ugefw ug feguw geufw guwefguwefgufewugewfgufgukdgdask g jksdjkwgjhwerjkt jhwjkwget kwettw t y wu u 7jae ga efv SD Gf hh eahr hreh tthr th ht he her rherhe erh rhejt rtjr jy kuu kku yu kkty j j ht gr gr gr gr RE REAHT EAHA ERT HET YH TE JTE AJ TAE J TE JA ETJ TE HE TAH ET J EATJ ET HA ET HAE TH AER AERH RE H AE HRER AH EAHLTRKE ALJHB KJB HK VFR DFF J UIJI IOH UHU IO I KIVNJK RERUUHGRE NTHENMTHE KT THT HTTJT Over the years, many have arisen to become what is commonly known as, a leader. Traits of a leader vary from being dedicated and altruistic to having courage and making sacrifices. All of those who step up to be a leader have a certain goal that they are trying to achieve. However, not all are successful in reaching what they aim for. This is what separates the true...

...π (sometimes written pi) is a mathematical constant whose value is the ratio of any circle's circumference to its diameter in the Euclidean plane; this is the same value as the ratio of a circle's area to the square of its radius. It is approximately equal to 3.14159265 in the usual decimal notation. Many formulae from mathematics, science, and engineering involve π, which makes it one of the most important mathematical constants.
π is an irrational number, which means that its value cannot be expressed exactly as a fraction m/n, where m and n are integers. Consequently, its decimal representation never ends or repeats. It is also a transcendental number, which implies, among other things, that no finite sequence of algebraic operations on integers (powers, roots, sums, etc.) can be equal to its value; proving this was a late achievement in mathematical history and a significant result of 19th century German mathematics. Throughout the history of mathematics, there has been much effort to determine π more accurately and to understand its nature; fascination with the number has even carried over into non-mathematical culture.
Probably because of the simplicity of its definition, the concept of π has become entrenched in popular culture to a degree far greater than almost any other mathematical construct. It is, perhaps, the most common ground between mathematicians and non-mathematicians. Reports on the latest, most-precise...

...
Today one of the most cherished ideologies of America is the fact that everyone is and should be created equal. With this cherished ideology bringing a sense of pride and diversity to America we must keep in mind that this cherished ideology did not always exist. Since 1865 various individuals and groups have not been able to receive and express their rights to full equal status in the United States. These different individuals and groups have seemingly fought for their rights in equality and have become pioneers in the fight for evolution for equality.
In 1865 African Americans in the United States under the 13th amendment were freed from the terrible burden of slavery. Through the 14th amendment they were given the right to citizenship and the right to equal protection. The 15th amendment gave them the right to vote regardless of their skin color race or any other type of servitude. These amendments were meant to be enforced and make a serious change in the everyday life of the average American.
With these amendments passing in 1865 they were meant to make a serious change towards the evolution of equality. These changes did not seem to happen right away and African Americans were still not being treated with equality. The average African American at this time were being denied there newly given rights every day making life extremely hard to stay...

1470 Words |
4 Pages

Share this Document

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":36934930,"categoryName":"Fiction","categoryParentId":"17","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":4,"pageRange":"1-4","totalPages":4}},"access":"premium","title":"History of Pi","additionalIds":[10,3,19,27],"additional":["Geography","Business \u0026 Economy","Natural Sciences","Sports \u0026 Recreation"],"loadedPages":{"html":[],"text":[1,2,3,4]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/History-Of-Pi-1386716.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.8","language":"en_US"}}