High Technology Fibers

Only available on StudyMode
  • Download(s) : 22
  • Published : September 15, 2008
Open Document
Text Preview

Human life is surrounded by hundreds of textile fibres either in the form of clothes, interior textiles or in the form of high performance technical textiles made of conventional or high technology fibres for various applications. A textile fibre is usually defined as a flexible, macroscopically homogenous cylindrical body mainly with circular cross- section having a high ratio of length to diameter (typically 100-3000: 1). Textile fibres are derived both from natural and synthetic origins. Natural fibres such as cotton, wool etc. are often found with lengths 1000-3000 times their diameter. On the other hand coarser natural fibres such as jute, flax, ramie, etc. have lengths 100- 500 times their diameter. However man-made fibres can be made in any desired ratio of length to diameter. The technical textile industry uses both natural and man-made fibres in manufacturing a variety of products. Natural fibres mainly come from agricultural and animal sources; (although asbestos is a natural fibre coming from mineral sources, but this fibre is banned in many countries from being used due to health hazards) whereas the production of man-made fibres is an important activity of the world-wide chemical industry involving largely natural polymers and synthetic polymers (derieved from petrochemical by-products). There are also a limited number of man-made fibres such as glass, metal and ceramics are produced using inorganic materials.

Although natural fibres are extensively used in the technical textile iiidwliv, a serious manufacturing of technical textiles only started about thirty years ago with the inception of man-made fibres. Over the last twenty, years, the man-made fibre industry has seen a radical growth in terms of fibre consumption tbr the technical textile industry. In general, the man-made fibre industry achieved a vast expansion between 1940 and 1970, creating a new spectacular look for the clothing and fashion trade, but today it is showing signs of maturity. Multinational fibre producers have, therefore, turned their

attention to a new dimension, which is technical textiles, to fuel the next major wave of creativity, innovation and growth. It will thus open-up the possibility of a major growth of particularly high tenacity and high technology man-made fibres for the technical textile industry. The growth is also expected to be fuelled by the significant global economic upturn in the first half of 2000.

The estimated total ofworld production of the major textile fibres (including both natural and man-made) for 1998 was over 55 million tonnes, ofwhich approximately 20% was used in the production of technical textiles. It is anticipated that by 2001, nearly 25% of the global.flbre production will be used in technical textiles. Of course, the major breakthrough in this growth will come from ‘New Technical Textiles and New Technologies’ replacing the traditional linear concept of material production. 2 CLASSIFICATION OF FIBRES

In general, textile fibres are classified into two main groups: natural and man-made. Virtually all kinds of fibres (both natural and man-made) are used in technical textiles. However, for narket structural requirements, fibres used in technical textiles can be divided into two main classes, namely: commodity fibres; and high-technology or speciality fibres.

Although by market perception. commqdity fibres are those which are extensively used for traditional textiles, such as apparel and clothing, household textiles, carpets etc., but contrary to this, today the majority of technical end-uses of textiles are based on commodity fibres. A high degree of engineering ingenuity is, however, often devoted to the design of the item constructed from such fibres. Commodity fibres can be sub-classified into two other groups: conventional fibres such as cotton, wool etc. and high-tenacity fibres, such as polyester, polypropylene etc. In...
tracking img