Heat Transfer

Only available on StudyMode
  • Download(s) : 352
  • Published : October 12, 2011
Open Document
Text Preview
Heat transfer
Heat transfer is the transition of thermal energy from a hotter object to a cooler object ("object" in this sense designating a complex collection of particles which is capable of storing energy in many different ways). When an object or fluid is at a different temperature than its surroundings or another object, transfer of thermal energy, also known as heat transfer, or heat exchange, occurs in such a way that the body and the surroundings reach thermal equilibrium, this means that they are at the same temprature. Heat transfer always occurs from a higher-temperature object to a cooler temperature one as described by the second law of thermodynamics or the Clausius statement. Where there is a temperature difference between objects in proximity, heat transfer between them can never be stopped; it can only be slowed. Conduction

Conduction is the transfer of heat by direct contact of particles of matter. The transfer of energy could be primarily by elastic impact as in fluids or by free electron diffusion as predominant in metals or phonon vibration as predominant in insulators. In other words, heat is transferred by conduction when adjacent atoms vibrate against one another, or as electrons move from atom to atom. Conduction is greater in solids, where atoms are in constant contact. In liquids (except liquid metals) and gases, the molecules are usually further apart, giving a lower chance of molecules colliding and passing on thermal energy. Heat conduction is directly analogous to diffusion of particles into a fluid, in the situation where there are no fluid currents. This type of heat diffusion differs from mass diffusion in behaviour, only in as much as it can occur in solids, whereas mass diffusion is mostly limited to fluids. Metals (eg. copper, platinum, gold, iron, etc.) are usually the best conductors of thermal energy. This is due to the way that metals are chemically bonded: metallic bonds (as opposed to covalent or ionic bonds) have free-moving electrons which are able to transfer thermal energy rapidly through the metal. As density decreases so does conduction. Therefore, fluids (and especially gases) are less conductive. This is due to the large distance between atoms in a gas: fewer collisions between atoms means less conduction. Conductivity of gases increases with temperature. Conductivity increases with increasing pressure from vacuum up to a critical point that the density of the gas is such that molecules of the gas may be expected to collide with each other before they transfer heat from one surface to another. After this point in density, conductivity increases only slightly with increasing pressure and density. To quantify the ease with which a particular medium conducts, engineers employ the thermal conductivity, also known as the conductivity constant or conduction coefficient, k. In thermal conductivity k is defined as "the quantity of heat, Q, transmitted in time (t) through a thickness (L), in a direction normal to a surface of area (A), due to a temperature difference (ΔT) [...]." Thermal conductivity is a material property that is primarily dependent on the medium's phase, temperature, density, and molecular bonding. A heat pipe is a passive device that is constructed in such a way that it acts as though it has extremely high thermal conductivity. Transient Conduction vs. steady state conduction

Steady state conduction is the form of conduction which happens when the temperature difference is constant, so that an equilibration time, the spatial distribution of temperatures in an object does not change (for example, a bar may be cold at one end and hot at the other, but the gradient of temperatures along the bar do not change with time).In short temprature at a section remains constant and it varies linearly along direction of heat transfer.In steady state the amount of heat entering a section is equal to amount of heat coming out.In steady state we can apply all laws of...
tracking img