General relativity or the general theory of relativity is the geometric theory of gravitation published by Albert Einstein in 1915. It is the current description of gravitation in modern physics. It generalises special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the four-momentum (mass-energy and linear momentum) of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Many predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Examples of such differences include gravitational time dilation, the gravitational redshift of light, and the gravitational time delay. General relativity's predictions have been confirmed in all observations and experiments to date. Although general relativity is not the only relativistic theory of gravity, it is the simplest theory that is consistent with experimental data. However, unanswered questions remain, the most fundamental being how general relativity can be reconciled with the laws of quantum physics to produce a complete and self-consistent theory of quantum gravity. Einstein's theory has important astrophysical implications. It points towards the existence of black holes—regions of space in which space and time are distorted in such a way that nothing, not even light, can escape—as an end-state for massive stars. There is evidence that such stellar black holes as well as more massive varieties of black hole are responsible for the intense radiation emitted by certain types of astronomical objects such as active galactic nuclei or microquasars. The bending of light by gravity can lead to the phenomenon...

...GeneralTheory of Relativity
1). Background
GeneralRelativity is a theory of gravitation developed and published by Albert Einstein in 1916. Once when Einstein was preparing for a review of his theory of relativity, he thought about the fact that a man falling from the roof of a building doesn't feel his own weight. This idea, which he called "The happiest thought of my...

...Generalrelativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915. According to generalrelativity, the observed gravitational attraction between masses results from their warping of space and time.
By the beginning of the 20th century, Newton's law of universal gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between...

...The History of Classical Gravitational Theory and GeneralRelativity
In the beginning scientists and religious men of their era tried to explain the universe both biblically and scientifically. One of the foremost Greek scientists was Aristotle; taught by Plato, that the circle and sphere are the two most perfect shapes in a 2 and 3 dimensional universe, Aristotelian system placed Earth at the center of the universe; and all other heavenly...

...Theories of Relativity Journal 2 Waheed Ahmed
The book I have chosen to complete my ISP journal on is Theories of Relativity by Barbara Haworth-Attard. The second half of the book begins with Dylan planning a trip to Murdock to try to move in with his grandparents. However, this plan fails miserably when he discovers that his grandmother has died and his grandfather is soon to follow. His situation only worsens...

...Albert Einstein’s vs. Newton: GeneralTheory of Relativity
Albert Einstein, most famously known as a physicist, was a contributor to the scientific world with his many known researches and humanitarian work. As a Nobel Prize Winner in 1921, his chronicled and more important works include Special Theory of Relativity (1905), Relativity (English Translation, 1920 and 1950),...

...In 1905, Albert Einstein determined that the laws of physics are the same for all non-accelerating observers, and that the speed of light in a vacuum was independent of the motion of all observers. This was the theory of special relativity. It introduced a new framework for all of physics and proposed new concepts of space and time.
Two objects exert a force of attraction on one another known as "gravity." Even as the center of the Earth is pulling you toward it...

...Application of GeneralRelativity
In Einstein’s theory of generalrelativity, time and space are made dynamic and are curved by matter and energy. This has allowed physicists to dream up configurations that would allow travel to far distant places in the universe that were once made unattainable by the sheer distances and the natural speed limit of the universe; the speed of light. The theory has also...

...Relativity research task
1. James Clerk Maxwell was a Scottish theoretical physicist who proposed a mathematical link between magnetism and light. He developed a series of mathematical equations that were eventually reduced to four equations now known as Maxwell’s equations. Explain the significance of Maxwell’s equation to scientists’ understanding of the transmission of light and the search for the aether in the Newtonian era of physics.
James Clerk Maxwell developed four of...

2532 Words |
7 Pages

Share this Document

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":34250782,"categoryName":"Periodicals","categoryParentId":"17","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":1,"pageRange":"1-1","totalPages":1}},"access":"premium","title":"General Theory of Relativity","additionalIds":[7,93,19,3],"additional":["Education","Education\/Greek System","Natural Sciences","Business \u0026 Economy"],"loadedPages":{"html":[],"text":[1]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/General-Theory-Of-Relativity-498698.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.8","language":"en_US"},"analytics":{"googleId":"UA-32718321-1"}}