Fresh Water

Only available on StudyMode
  • Download(s) : 186
  • Published : February 16, 2013
Open Document
Text Preview
1. Introduction

Fresh water is an indispensable resource for human livelihood, agricultural irrigation and economic development (Brooks, 2007). However, due to the rapid population growth and the limited reserves, increasing regions have faced serious scarcity of fresh water (Williamson, 2010). Saudi Arabia is one of the driest countries in the world (CIA, 2011). According to World Bank (2011), the world average fresh water consumption is nearly 7000m³/year/person, while the water resource per capita in Saudi Arabia is less than 1200m³/year/person. In order to satisfy the demand for water, Saudi Arabia currently supplies fresh water via deep drilling of fossil groundwater (UNESCO, 2009). Nevertheless, society increasingly recognises that those water resources are non-renewable and are liable to be reduced by the overexploited boreholes and wells. Thus Saudi Arabia needs to find alternative and sustainable methods to solve these issues. Since there is abundant sea water around Saudi Arabia, large-scale desalination could be the ideal solution to water scarcity. However, the expensive cost and the detrimental influence on the environment might limit the scale and sustainability of this method. Due to the cheap cost and the minor environmental damage, wastewater reuse is regarded as another potential solution. However, it seems to have a low social acceptance.

Therefore, this report will compare the feasibility of desalination and water reuse in terms of cost, social acceptance and environmental impacts, thereby exploring the most suitable method to deal with the scarcity of water in Saudi Arabia.

2. Background

Saudi Arabia is located in the Middle East, bordering the Persian Gulf and the Red Sea (CIA, 2011). It is famous for the abundant reserves of oil and gas. However, the fresh water resources in Saudi Arabia are very limited. According to World Bank (2011), there is no one river and lake with perennial water throughout this country. Furthermore, due to the influence of the subtropical climate, the annual precipitation is only about 100 mm and the climate is hot and dry (ibid.). Additionally, rapid population growth has caused higher increase of demand for water (Abderrahman, 2000). Shortages of water have constrained the development of agriculture and economy (Williamson, 2010).

Since the underground water is estimated to be able to supply for 320 years, the underground water is still the principal source of water at present (UNESCO, 2009: 100). However, with the increasing awareness of defects of this method, the focus of the future development of water provision has shifted to other sustainable water technologies. In order to deal with fresh water shortages, desalination has received enormous investments. According to Abu-Arabi (2007), in 2004 the number of desalination industries reached 30 and they can supply 1.1 billion cubic metres of fresh water per year.

Wastewater reuse is regarded as another future means of water provision. According to Bashitialshaaer et al (2009), in 2009 there were 33 wastewater treatment plants with a capacity of 748 billion cubic metres per year.

3. Requirements

Cost should be the principal consideration of water provision because an expensive cost might limit the scale of application of methods. This also includes the cost of energy consumption.

Social acceptance plays a significant role in the development of water supply technologies. If the water cannot be accepted by society, it will lead to very little consumption.

Environment has a profound influence on human beings. In order to prevent water supply technology undermining the environment, its impacts on the environment should be considered.

4. Presentation of options

4.1 Desalination

Desalination is “a specific treatment process to take minerals from saline water to purify for drinking water and irrigation” (Al-Sahlawi, 1999). Sometimes this process is used to take salinity and...
tracking img