Preview

Forced Convection Heat Transfer

Powerful Essays
Open Document
Open Document
2412 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Forced Convection Heat Transfer
Forced Convection Heat Transfer

I. Introduction

This laboratory deals with forced convection, forced convection can be considered as a staple of heat transfer. That is to say that forced convection can be found in almost any heat transfer problem, and thus understanding its importance and how it affects a given problem is one of the more important learning objectives/outcomes of heat transfer.

When dealing with forced convection the most important section, after understanding how convection works, is the convection heat transfer coefficient. The heat transfer coefficient for convection is denoted by (h) and is measured in w/m^2*K, this lab delves into the application of convection heat transfer and how it correlates to temperature, velocity, ect of the fluid in question.

II. Objectives

The objectives for this laboratory include; determining the convective heat transfer coefficient and friction factor of the air flowing through a copper pipe, as well as evaluation of the Reynolds analogy and taking measurements of the radial velocity and temp profile in an internal pipe flow.

III. Procedure and Apparatus -Apparatus

A fan forces air through a long pipe with an orifice plate along the way. Before the test section there is a reduction in diametrical area which will cause an increase in velocity and a decrease in pressure. It should also be noted that the test section has a coiled heater around it which travels the length and has proper insulation.

There are seven thermocouples placed along the test section as shown in Fig 1. The exit section of the test pipe has a radial temperature and pressure measuring device as shown in figure 2. Pressures and temperatures are measured along the test section with Pitot tubes (pressure measurement) and thermocouples (temp measurement). The measured values are output on digital displays and the desired temperature is chosen by using a selection dial switch.

Orifice



References: [1] ME3435: Heat Transfer Laboratory, Department of Mechanical Engineering, The University of New Brunswick. [2] ME3415: thermodynamics/ ME3435Heat Transfer Laboratory Format, Department of Mechanical Engineering, The University of New Brunswick. [3] Archimedes: A Gold Thief and Buoyancy/ Larry "Harris" Taylor, PhD [4] Engineering tool box/air properties, 156.html. VIII Appendices

You May Also Find These Documents Helpful