Eurocode

Only available on StudyMode
  • Topic: Force, Hydrogen, Chemical elements
  • Pages : 7 (598 words )
  • Download(s) : 61
  • Published : July 24, 2010
Open Document
Text Preview
7/14/2010

EC3 Made Simple

6 Mei 2009

Content
1. MIND MAP 2. INTRODUCTION 3. EUROCODE 3 4. CROSS SECTION CLASSIFICATION 5. DESIGN OF ELEMENTS 6. WORK EXAMPELS

1

7/14/2010

MIND MAP

INTRODUCTION

CONNECTIONS

EC3 MADE SIMPLE

EUROCODE 3

DESIGN CHECKING USING EC3

CROSS SECTION CLASSIFICATION

2

7/14/2010

MIND MAP
Eurocode 3

CROSS-SECTION RESISTANCE

DESIGN CHECKING

BUCKLING RESISTANCE

MIND MAP
Eurocode 3

TENSION cl.6.2.3 COMPRESSION cl. 6.2.4 BENDING cl.6.2.5 SHEAR cl.6.2.6 TORSION cl.6.2.7 BENDING &SHEAR cl.6.2.8

DESIGN CHECKING

CROSS-SECTION RESISTANCE BENDING, BENDING SHEAR & AXIAL LOAD cl.6.2.6 BENDING & AXIAL LOAD cl.6.2.6

3

7/14/2010

MIND MAP

Eurocode 3

DESIGN CHECKING
BUCKLING RESISTANCE

BENDING AND AXIAL COMPRESSION cl.6.3.3

BENDING cl.6.3.2 COMPRESSION cl.6.3.4

4

7/14/2010

Element Design
Eurocode 3

CROSS-SECTION RESISTANCE

ELEMENT DESIGN

BUCKLING RESISTANCE

Element Design
Eurocode 3

TENSION cl.6.2.3 COMPRESSION cl. 6.2.4 BENDING cl.6.2.5 SHEAR cl.6.2.6 TORSION cl.6.2.7 BENDING &SHEAR cl.6.2.8

DESIGN CHECKING

CROSS-SECTION RESISTANCE BENDING, BENDING SHEAR & AXIAL LOAD cl.6.2.6 BENDING & AXIAL LOAD cl.6.2.6

5

7/14/2010

Design Element 1 ) Tension (cl.6.2.3)

Design Element 2 ) Compression (cl.6.2.4)

6

7/14/2010

Design Element 3 ) Bending moment (cl.6.2.5)
In i l i l I a simple single span, f il failure occurs when d i value of th h design l f the bending moment MEd exceeds design moment resistance of the cross section Mc.Rd. Magnitude depends on section shape, material strength and shape section classification. Where shear force on cross-section is small its effect on the resistance moment may be neglected. Wpl, full plastic section modulus Wel, l ti W l elastic section modulus ti d l Weff, effective section modulus

EC3 sets this limit as a shear force of 50% of the plastic shear resistance

Design Element

7

7/14/2010

Design Element 4) Shear (cl.6.2.6)
As almost all the shear force is carried by the web and since the variation in shear stress through the web is quite small it is sufficiently accurate for design to assume an average shear stress over the web. b stress τ

τ =
Vhb 4I

τ h τ

tf

τ max

Vhb ⎛ h⎞ = ⎜1+ ⎟ 2I ⎝ 4b ⎠

tw Cross - section

τ =

Vhb 2I

The pattern of shear stress in an I section assuming elastic behaviour

Variation of shear stress τ

15

Design Element

16

8

7/14/2010

Design Element

The shear area Av may be taken as cl.6.2.6 (3)

tw

h

17

Design Element 5) Torsion (cl.6.2.7)

18

9

7/14/2010

Design Element Combined shear force torsional

19

Design Element 6) Bending and Shear (cl.6.2.8)

20

10

7/14/2010

Design Element Alternative for I section (equal flanges) and bending about major axis, the reduced design plastic resistance axis moment allowing for the shear force is as follow:

21

Design Element 7) Bending and axial force (cl.6.2.9)

22

11

7/14/2010

Design Element Design plastic moment reduced due to axial force

23

Design Element For bi-axial bending, follow this criteria:

24

12

7/14/2010

Design Element 8) Bending, shear and axial force. (6.2.10)

25

Thank You

6 Mei 2009

13

tracking img