Economic Order Quantity and Decimal Places

Only available on StudyMode
  • Download(s) : 503
  • Published : April 8, 2013
Open Document
Text Preview
1.
value:
10 points
 
Problem 10-1

Specifications for a part for a DVD player state that the part should weigh between 25.2 and 26.2 ounces. The process that produces the parts has a mean of 25.7 ounces and a standard deviation of .25 ounce. The distribution of output is normal. Use Table-A.|    

a.| What percentage of parts will not meet the weight specs? (Round your "z" value and final answer to 2 decimal places. Omit the "%" sign in your response.)|     
  Percentage of parts| %  |
    
b.| Within what values will 95.44 percent of sample means of this process fall, if samples of n = 8 are taken and the process is in control (random)? (Round your answers to 2 decimal places.)|     

  Lower value ,  Upper value  |

rev: 02_06_2012

rev: 03_15_2012
http://lectures-auth.mhhe.com/connect/0073525251/hints/hint_10-28.html check my workeBook Link View Hint #1references
Problem 10-3

Checkout time at a supermarket is monitored using a mean and a range chart. Six samples of n = 20 observations have been obtained and the sample means and ranges computed:|

Sample| Mean| Range| Sample| Mean| Range|
1| 3.06| .42| 4| 3.13| .46|
2| 3.15| .47| 5| 3.06| .46|
3| 3.11| .41| 6| 3.09| .45|
|

Factors for three-sigma control limits for  and R charts|

|  | -------------------------------------------------
FACTORS FOR R CHARTS|
Number of Observations in Subgroup,
n| Factor for
Chart,
A2| Lower
Control Limit,
D3| Upper
Control Limit,
D4|
2           | 1.88|          0| 3.27| 3           | 1.02|          0| 2.57| 4           | 0.73|          0| 2.28| 5           | 0.58|          0| 2.11| 6           | 0.48|          0| 2.00| 7           | 0.42|          0.08| 1.92| 8           | 0.37|          0.14| 1.86| 9           | 0.34|          0.18| 1.82| 10           | 0.31|          0.22| 1.78| 11           | 0.29|          0.26| 1.74| 12           | 0.27|          0.28| 1.72| 13           | 0.25|          0.31| 1.69| 14           | 0.24|          0.33| 1.67| 15           | 0.22|          0.35| 1.65| 16           | 0.21|          0.36| 1.64| 17           | 0.20|          0.38| 1.62| 18           | 0.19|          0.39| 1.61| 19           | 0.19|          0.40| 1.60| 20           | 0.18|          0.41| 1.59| |

a.| Using the factors in the above table, determine upper and lower limits for mean and range charts. (Round your intermediate calculations and final answers to 4 decimal places.)|

 |  |
  Upper limit for mean|  |
  Lower limit for mean|  |
  Upper limit for range|  |
  Lower limit for range|  |
|

b.| Is the process in control?|
 |  |
 | | Yes|
| No|
|
Problem 10-4

Computer upgrades have a nominal time of 80 minutes. Samples of five observations each have been taken, and the results are as listed.|

-------------------------------------------------
SAMPLE|
1| 2| 3| 4| 5| 6|
79.2| 80.5| 79.6| 78.9| 80.5| 79.7|
78.8| 78.7| 79.6| 79.4| 79.6| 80.6|
80.0| 81.0| 80.4| 79.7| 80.4| 80.5|
78.4| 80.4| 80.3| 79.4| 80.8| 80.0|
80.6| 80.1| 80.8| 80.6| 78.8| 81.1|
|

Factors for three-sigma control limits for  and R charts|

 |  | ------------------------------------------------- FACTORS FOR R CHARTS|
Number of Observations in Subgroup,
n| Factor for
Chart,
A2| Lower
Control Limit,
D3| Upper
Control Limit,
D4|
2           | 1.88|           0| 3.27| 3           | 1.02|           0| 2.57| 4           | 0.73|           0| 2.28| 5           | 0.58|           0| 2.11| 6           | 0.48|           0| 2.00| 7           | 0.42|           0.08| 1.92| 8           | 0.37|           0.14| 1.86| 9           | 0.34|           0.18| 1.82| 10           | 0.31|           0.22| 1.78| 11           | 0.29|...
tracking img