Dhsjd

Only available on StudyMode
  • Download(s) : 40
  • Published : January 8, 2013
Open Document
Text Preview
Scalable and Secure Sharing of Personal Health
Records in Cloud Computing using
Attribute-based Encryption

Abstract

Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to unauthorized parties. To assure the patients’ control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access and efficient user revocation, have remained the most important challenges toward achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-trusted servers. To achieve fine-grained and scalable data access control for PHRs, we leverage attribute based encryption (ABE) techniques to encrypt each patient’s PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multi-authority ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are presented which show the security, scalability and efficiency of our proposed scheme.

Architecture

Existing System

In Existing system a PHR system model, there are multiple owners who may encrypt according to their own ways, possibly using different sets of cryptographic keys. Letting each user obtain keys from every owner who’s PHR she wants to read would limit the accessibility since patients are not always online. An alternative is to employ a central authority (CA) to do the key management on behalf of all PHR owners, but this requires too much trust on a single authority (i.e., cause the key escrow problem). Key escrow (also known as a “fair” cryptosystem) is an

arrangement in which the keys needed to decrypt encrypted data are held in escrow so that, under certain circumstances, an authorized third party may gain access to those keys. These third parties may include businesses, who may want access to employees' private communications, or governments, who may wish to be able to view the contents of encrypted communications.

Proposed System
We endeavor to study the patient centric, secure sharing of PHRs stored on semi-trusted servers, and focus on addressing the complicated and challenging key management issues. In order to protect the personal health data stored on a semitrusted server, we adopt attribute-based encryption (ABE) as the main encryption primitive.

Using ABE, access policies are expressed based on the attributes of users or data, which enables a patient to selectively share her PHR among a set of users by encrypting the file under a set of attributes, without the need to know a complete list of users.

The complexities per encryption, key generation and decryption are only linear with the number of attributes involved.

Modules

1. Registration
2. Upload files
3. ABE for Fine-grained Data Access Control
4. Setup and Key Distribution
5. Break-glass

Modules Description

Registration

In this module normal registration for the multiple users. There are multiple owners, multiple AAs, and multiple users. The attribute hierarchy of files – leaf nodes is atomic file categories while internal nodes are compound categories. Dark boxes are the categories that a PSD’s data reader has access...
tracking img