De Morgan’s laws
In formal logic, De Morgan's laws are rules relating the logical operators "and" and "or" in terms of each other via negation, namely: (A U B)’=A’ ∩ B’
(A ∩ B)’=A’ U B’
The rules can be expressed in English as:
"The negation of a conjunction is the disjunction of the negations." and "The negation of a disjunction is the conjunction of the negations." The law is named after Augustus De Morgan (1806–1871) who introduced a formal version of the laws to classical propositional logic. De Morgan's formulation was influenced by algebraization of logic undertaken by George Boole, which later cemented De Morgan's claim to the find. Although a similar observation was made by Aristotle and was known to Greek and Medieval logicians (in the 14th century William of Ockham wrote down the words that would result by reading the laws out), De Morgan is given credit for stating the laws formally and incorporating them in to the language of logic. De Morgan's Laws can be proved easily, and may even seem trivial. Nonetheless, these laws are helpful in making valid inferences in proofs and deductive arguments. Logic gates invert all inputs to a gate reverses that gate's essential function from AND to OR, or vice versa, and also inverts the output. So, an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a NAND gate, and an AND gate with all inputs inverted (a Negative-AND gate) behaves the same as a NOR gate. DeMorgan's theorems state the same equivalence in "backward" form: that inverting the output of any gate results in the same function as the opposite type of gate (AND vs. OR) with inverted inputs

De Morgan’s theorem is used to simplify a lot expression of complicated logic gates. For example, (A + (BC)')'. The parentheses symbol is used in the example.

_
The answer is A BC.

Let's apply the principles of DeMorgan's theorems to the simplification of a gate circuit:

...particularly regarding the core dynamics—revenues, regulations, clients
—that influence the six business models that we feel are most viable. Our aim is to provide food for thought for senior management teams as they refine their strategies.
Página 1 de 9
Market Developments
We see two key challenges facing CMIB players. First, revenues have now become a scarce and volatile resource, pressuring short-term ROE. Second, regulation continues to take its toll and will remain a...

...-------------------------------------------------
Pythagorean Theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a relation in Euclidean geometry among the three sides of a right triangle (right-angled triangle). In terms of areas, it states:
In any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two...

...bernoulli's theorem
ABSTRACT / SUMMARY
The main purpose of this experiment is to investigate the validity of the Bernoulli equation when applied to the steady flow of water in a tape red duct and to measure the flow rate and both static and total pressure heads in a rigid convergent/divergent tube of known geometry for a range of steady flow rates. The apparatus used is Bernoulli’s Theorem Demonstration Apparatus, F1-15. In this experiment, the pressure...

...pressure dynamics specified by Bernoulli’s Principle to keep their rare wheels on the ground, even while zooming off at high speed. It is successfully employed in mechanism like the carburetor and the atomizer.
The study focuses on Bernoulli’s Theorem in Fluid Application. A fluid is any substance which when acted upon by a shear force, however small, cause a continuous or unlimited deformation, but at a rate proportional to the applied force. As a matter of fact, if a fluid...

...BINOMIAL THEOREM :
AKSHAY MISHRA
XI A , K V 2 , GWALIOR
In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the power (x + y)n into a sum involving terms of the form axbyc, where the coefficient of each term is a positive integer, and the sum of the exponents of x and y in each term is n. For example: The coefficients appearing in the binomial...

...The Coase Theorem
In “The Problem of Social Cost,” Ronald Coase introduced a different way of thinking about externalities, private property rights and government intervention. The student will briefly discuss how the Coase Theorem, as it would later become known, provides an alternative to government regulation and provision of services and the importance of private property in his theorem.
In his book The Economics of Welfare, Arthur C. Pigou,...

...theoremsThe Sylow Theorems
Here is my version of the proof of the Sylow theorems. It is the result of
taking the proof in Gallian and trying to make it as digestible as possible. In
particular, I tried to break the long proof into bite-sized pieces. The main
goal here is to convey an overview of how the ingredients fit together, so I'll
skip lightly over some of the details.
The prerequisites are basically all of the group theory that came before the...

...Negative Externalities and the Coase Theorem
As Adam Smith explained, selfishness leads markets to produce whatever people want. To get rich, you have to sell what the public wants to buy. Voluntary exchange will only take place if both parties perceive that they are better off. Positive externalities result in beneficial outcomes for others, whereas negative externalities impose costs on others. The Coase Theorem is most easily explained via an example
This...

1020 Words |
4 Pages

Share this Document

Let your classmates know about this document and more at StudyMode.com

## Share this Document

Let your classmates know about this document and more at StudyMode.com