Cellonics

Only available on StudyMode
  • Download(s) : 103
  • Published : February 24, 2013
Open Document
Text Preview
|Electronics(ECE)/Electrical(EEE)/Instrumentation(EI or AE&I) Seminar Report | CELLONICS |

CELLONICS

ABSTRACT

CHAPTER-1

INTRODUCTION

1INTRODUCTION

Are you tired of slow modem connections? Cellonics Incorporated has developed new technology that may end this and other communications problems forever. The new modulation and demodulation technology is called Cellonics. In general, this technology will allow for modem speeds that are 1,000 times faster than our present modems. The development is based on the way biological cells communicate with each other and nonlinear dynamical systems (NDS). Major telcos, which are telecommunications companies, will benefit from the incredible speed, simplicity, and robustness of this new technology, as well as individual users.

In current technology, the ASCII uses a combination of ones and zeros to display a single letter of the alphabet (Cellonics, 2001). Then the data is sent over radio frequency cycle to its destination where it is then decoded. The original technology also utilizes carrier signals as a reference which uses hundreds of wave cycles before a decoder can decide on the bit value (Legard, 2001), whether the bit is a one or a zero, in order to translate that into a single character.

The Cellonics technology came about after studying biological cell behaviour. The study showed that human cells respond to stimuli and generate waveforms that consist of a continuous line of pulses separated by periods of silence. The Cellonics technology found a way to mimic these pulse signals and apply them to the communications industry (Legard, 2001). The Cellonics element accepts slow analog waveforms as input and in return produces predictable, fast pulse output, thus encoding digital information and sending it over communication channels. Nonlinear Dynamical Systems (NDS) are the mathematical formulations required to simulate the cell responses and were used in building Cellonics. Because the technique is nonlinear, performance can exceed the norm, but at the same time, implementation is straightforward (Legard, 2001).

This technology will be most beneficial to businesses that do most of their work by remote and with the use of portable devices. The Cellonics technology will provide these devices with faster, better data for longer periods of time (Advantages, 2001). Cellonics also utilizes a few discrete components, most of which are bypassed or consume very little power. This reduces the number of off the shelf components in portable devices while dramatically decreasing the power used, leading to a lower cost for the entire device. The non-portable devices of companies will benefit from the lack of components the machines have and the company will not have to worry so much about parts breaking.

CHAPTER- 2

PRINCIPLE OF CELLONICS TECHNOLOGY

2: PRINCIPLE OF CELLONICS TECHNOLOGY

[pic]

Fig 2.a: Measured ß-cell Response

The Cellonics™ technology is a revolutionary and unconventional approach based on the theory of nonlinear dynamical systems (NDS) and modelled after biological cellbehaviour1. In essence, the term Cellonics is an euphemism for ‘electronic cells’. When used in the field of communications, the technology has the ability to encode, transmit and decode digital information powerfully over a variety of physical channels, be they cables or wirelessly through the air. There have been much research over the past decades to study inter-cell communications. Laboratory studies have...
tracking img