Butterfly Effect Origins

Only available on StudyMode
  • Topic: Butterfly effect, Chaos theory, Causality
  • Pages : 2 (439 words )
  • Download(s) : 33
  • Published : May 12, 2013
Open Document
Text Preview
The phrase "Butterfly Effect" refers to the idea that a butterfly's wings might create tiny changes in the atmosphere that may ultimately alter the path of a tornado or delay, accelerate or even prevent the occurrence of a tornado in another location. Note that the butterfly does not power or directly create the tornado. The flap of the wings is a part of the initial conditions; one set of conditions leads to a tornado while the other set of conditions doesn't. The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to large-scale alterations of events (compare: domino effect). Had the butterfly not flapped its wings, the trajectory of the system might have been vastly different - it's possible that the set of conditions without the butterfly flapping its wings is the set that leads to a tornado.

Chaos theory and the sensitive dependence on initial conditions was described in the literature in a particular case of the three-body problem by Henri Poincaré in 1890. He later proposed that such phenomena could be common, for example, in meteorology.

In 1898, Jacques Hadamard noted general divergence of trajectories in spaces of negative curvature. Pierre Duhem discussed the possible general significance of this in 1908. The idea that one butterfly could eventually have a far-reaching ripple effect on subsequent historic events first appears in "A Sound of Thunder", a 1952 short story by Ray Bradbury about time travel.

In 1961, Lorenz was using a numerical computer model to rerun a weather prediction, when, as a shortcut on a number in the sequence, he entered the decimal .506 instead of entering the full .506127. The result was a completely different weather scenario. In 1963 Lorenz published a theoretical study of this effect in a well-known paper called Deterministic Nonperiodic Flow. Elsewhere he said[citation needed] that "One meteorologist remarked that if the theory were correct, one...
tracking img