Top-Rated Free Essay
Preview

Boiling and Condensation

Good Essays
2714 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Boiling and Condensation
A SHORT INTRODUCTION TO TWO-PHASE FLOWS Condensation and boiling heat transfer
Herv´ Lemonnier e DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40, herve.lemonnier@cea.fr herve.lemonnier.sci.free.fr/TPF/TPF.htm ECP, 2011-2012

HEAT TRANSFER MECHANISMS
• Condensation heat transfer: – drop condensation – film condensation • Boiling heat transfer: – Pool boiling, natural convection, ´bullition en vase e – Convective boiling, forced convection, • Only for pure fluids. For mixtures see specific studies. Usually in a mixture, h xi hi and possibly hi . • Many definitions of heat transfer coefficient, q , h[W/m /K] = ∆T
2

hL Nu = , k

k(T ?)

Condensation and boiling heat transfer

1/42

CONDENSATION OF PURE VAPOR
• Flow patterns – Liquid film flowing. – Drops, static, hydrophobic wall (θ ≈ π). Clean wall, better htc. • Fluid mixture non-condensible gases: – Incondensible accumulation at cold places. – Diffusion resistance. – Heat transfer deteriorates. – Traces may alter significantly h

Condensation and boiling heat transfer

2/42

FILM CONDENSATION
• Thermodynamic equilibrium at the interface, Ti = Tsat (p∞ ) • Local heat transfer coefficient, h(z) q q = T i − Tp Tsat − Tp

• Averaged heat transfer coefficient, h(L) 1 L
L

h(z)dz
0

• NB: Binary mixtures Ti (xα , p) and pα (xα , p). Approximate equilibrium conditions, – For non condensible gases in vapor, pV = xPsat (Ti ), Raoult relation – For dissolved gases in water, pG = HxG , Henry’s relation
Condensation and boiling heat transfer 3/42

CONTROLLING MECHANISMS
• Slow film, little convective effect, conduction through the film (main thermal resistance) • Heat transfer controlled by film characteristics, thickness, waves, turbulence. • Heat transfer regimes, Γ ML , P ReF 4Γ µL

– Smooth, laminar, ReF < 30, – Wavy laminar, 30 < ReF < 1600 – Wavy turbulent, ReF > 1600

Condensation and boiling heat transfer

4/42

CONDENSATION OF SATURATED STEAM
• Simplest situation, only a single heat source: interface, stagnant vapor, • Laminar film (Nusselt, 1916, Rohsenow, 1956), correction 10 to 15%, h(z) =
3 kL ρL g(ρL

− ρV )(hLV +0, 68CP L [Tsat − TP ]) 4µL (Tsat − TP )z
1

1 4

• Averaged heat transfer coefficient (TW = cst) : h(z) ∝ z − 4 , h(L) = 4 h(L) 3 • Condensate film flow rate, energy balance at the interface, Γ(L) = h(L)(Tsat − TP )L hLV

• Heat transfer coefficient-flow rate relation, ¯ h(L) kL µ2 L ρL (ρL − ρV )
1 3

=

−1 1, 47 ReF 3 1 2 (TW

• hLV and ρV at saturation. kL , ρL at the film temperature TF
1 • µ = 4 (3µL (TP ) + µL (Ti )), exact when 1/µL linear with T .

+Ti ),

Condensation and boiling heat transfer

5/42

SUPERHEATED VAPOR
• Two heat sources: vapor (TV > Ti ) and interface. • Increase of heat transfer wrt to saturated conditions, empirical correction, ¯ ¯ hS (L) = h(L) 1 + CP V (TV − Tsat ) hLV
1 4

• Energy balance at the interface, film flow rate, ¯ hS (L)(TW − Tsat )L Γ(L) = hLV + CP V (TV − Tsat )

Condensation and boiling heat transfer

6/42

FILM FLOW RATE-HEAT TRANSFER COEFFICIENT
• Laminar, ¯ h(L) kL µ2 L ρL (ρL − ρV )
1 3

=

−1 1, 47 ReF 3

−0,22 • Wavy laminar and previous regime (Kutateladze, 1963), h(z) ∝ ReF ),

¯ h(L) kL

µ2 L ρL (ρL − ρV )

1 3

ReF = 1, 08Re1,22 − 5, 2 F

• Turbulent and previous regimes (Labuntsov, 1975), h(z) ∝ Re0,25 , F ¯ h(L) kL µ2 L ρL (ρL − ρV )
1 3

ReF = 8750 + 58Pr−0,5 (Re0,75 − 253) F F

• NB: Implicit relation, ReF depends on h(L) through Γ.

Condensation and boiling heat transfer

7/42

OTHER MISCELLANEOUS EFFECTS
• Steam velocity, vV , when dominant effect, • Vv descending flow, vapor shear added to gravity, • Decreases fil thickness, • Delays transition to turbulence turbulence, h ∝ τi
1 2

• See for example Delhaye (2008, Ch. 9, p. 370) • When 2 effects are comparable, h1 stagnant, h2 with dominant shear , h= (h2 1 +
2 1 h2 ) 2

Condensation and boiling heat transfer

8/42

CONDENSATION ON HORIZONTAL TUBES
• Heat transfer coefficient definition, ¯= 1 h π π h(u)du
0

• Stagnant vapor conditions, laminar film, Nusselt (1916) ¯ h= 0.728 (0.70)
3 kL ρL (ρL

− ρV )ghLV µL (Tsat − Tp )D

1 4

• 0.728, imposed temperature, 0.70, imposed heat flux. • Γ, film flow rate per unit length of tube.

Condensation and boiling heat transfer

9/42

• Film flow rate- heat transfer coefficient, energy balance, ¯ h kL µ2 L ρL (ρL − ρV )
1 3

=

1.51 (1.47)

−1 ReF 3

• Vapor superheat and transport proprieties, same as vertical wall • Effect of steam velocity (Fujii), ¯ h = 1.4 h0 u2 (Tsat − TP )kL V gDhLV µL
0.05

¯ h 1< < 1.7, h0

• Tube number effect in bundles, (Kern, 1958), h(1, N ) = N −1/6 h1

Condensation and boiling heat transfer

10/42

DROP CONDENSATION
• Mechanisms, – Nucleation at the wall, – Drop growth, – Coalescence, – Dripping down (non wetting wall) • Technological perspective, – Wall doping or coating – Clean walls required, fragile – Surface energy gradient walls. Selfdraining

Condensation and boiling heat transfer

11/42

• heat transfer coefficient, 1 1 1 1 1 = + + + h hG hd hi hco • G : non-condensible gas, d : drop, i : phase change, co coating thickness. • Non-condensible gases effect, ωi ≈ 0, 02 ⇒ h → h/5 • Example, steam on copper, Tsat > 22o C, h in W/cm2 /o C, hd = min(0, 5 + 0, 2Tsat , 25)

Condensation and boiling heat transfer

12/42

POOL BOILING
1 7

• Nukiyama (1934) • Only one heat sink, stagnant saturated water, • Wire NiCr and Pt, – Diameter: ≈ 50µm, – Length: l – Imposed power heating: P

6

I= J

Condensation and boiling heat transfer

13/42

BOILING CURVE
• Imposed heat flux, q (W /c m
2

)

P = qπDl = U I
1 1 6

• Wall and wire temperature are equal, D→0 U R(T ) = , I < T > 3 ≈ TW | |

• Wall super-heat: ∆T = TW − Tsat
2 4 3 5 2 0 0 , T sa t

• Heat transfer coefficient,
(°C )

h

TW

q − Tsat

Condensation and boiling heat transfer

14/42

BOILING CURVE
G F AD H e a t flu x C H B A E

W a ll s u p e rh e a t

http://www-heat.uta.edu, Next

Condensation and boiling heat transfer

15/42

HEAT TRANSFER REGIMES q N u c le a te b o ilin g F lu x m a x . B u rn -o u t

D , T 0, q
0

G

H
F lu x m in .

F ilm

b o ilin g

A

, T

sa t

• OA: Natural convection • AD: Nucleate boiling

• DH: Transition boiling • HG: Film boiling

Condensation and boiling heat transfer

16/42

TRANSITION BOILING STABILITY q N u c le a te b o ilin g F lu x m a x . B u rn -o u t

• Wire energy balance,
D , T 0, q
0

G

M Cv

dT = P − qS dt

H
F lu x m in .

• Linearize at ∆T0 , q0 , T = T0 + T1 ,
F ilm b o ilin g

A

, T

M Cv sa t

dT1 ∂q = P − q0 S −S T1 dt ∂∆T
=0

• Solution, linear ODE, T1 = T10 exp(−αt), α= S M Cv ∂q ∂∆T

T0

• 2 stable solutions, one unstable (DH), ∂q 0, R > 0 q = h(TL∞ − TLi ) = h ∆T − ∆T > ∆Teq =
2σ dT R dp sat ,

2σ dT R dp sat

R > Req =

2σ dT ∆T dp sat

1 bar, ∆T = 3o C, Req = 5, 2 µm, 155 bar, ∆T = 3o C, Req = 0, 08 µm
Condensation and boiling heat transfer 20/42

NUCLEATE BOILING MECHANISMS
• Super-heated liquid transport, Yagumata et al. (1955) q ∝ (TP − Tsat )1.2 n0.33 • n: active sites number density,
5÷6 3 n ∝ ∆Tsat ⇒ q ∝ ∆Tsat

• Very hight heat transfer, precision unnecessary. • Rohsenow (1952), analogy with convective h. t.: Nu = CRea Prb , ρL V L • Scales : Re = , µL – Length: detachment diameter, capillary length: L ≈ – Liquid velocity: energy balance, q = mhLV , V ≈ ˙ Ja q ρL hLV σ g(ρL −ρV )

• Csf

CpL (TP − Tsat ) = Csf Re0.33 Prs L hLV ≈ 0.013, s = 1 water, s = 1.7 other fluids.
Condensation and boiling heat transfer 21/42

BOILING CRISIS, CRITICAL HEAT FLUX

• Flow pattern close to CHF: critical heat flux ), Rayleigh-Taylor instability, • Stability of the vapor column: Kelvin-Helmholtz, • Energy balance over A, λT = 2π 3 √ σ , g(ρL − ρV ) 1 σ 2 ρV UV < π , 2 λH qA = ρV UV AJ hLV

Condensation and boiling heat transfer

22/42

• Zuber (1958), jet radius RJ = 1 λT , λH = 2πRJ , marginal stability, 4 qCHF = 0.12ρV hLV
1/2
4

σg(ρV − ρL )

• Lienhard & Dhir (1973), jet radius RJ = 1 λT , λH = λT , 4 qCHF = 0.15ρV hLV
1/2
4

σg(ρV − ρL )

• Kutateladze (1948), dimensional analysis and experiments, qCHF = 0.13ρV hLV
1/2
4

σg(ρV − ρL )
23/42

Condensation and boiling heat transfer

FILM BOILING

• Analogy with condensation (Nusselt, Rohsenow), Bromley (1950), V NuL = 0.62 ρV g(ρL − ρV )hLV D µV kV (TW − Tsat )
3
1 4

L

,

hLV = hLV

CP V (TW − Tsat ) 1 + 0.34 hLV

• Transport and thermodynamical properties: – Liquid at saturation Tsat ,
1 – Vapor at the film temperature, TF = 2 (Tsat + TW ).

• Radiation correction: TW > 300o C,

: emissivity, σ = 5, 67 10−8 W/m2 /K4 o 4 4 σ(TW − Tsat ) h = h(T < 300 C) + TW − Tsat

Condensation and boiling heat transfer

24/42

TRANSITION BOILING

• Minimum flux, qmin = ChLV
4

σg(ρL − ρV ) (ρL + ρV )2

– Zuber (1959), C = 0.13, stability of film boiling, – Berenson (1960), C = 0, 09, rewetting, Liendenfrost temperature. • Scarce data in transition boiling, • Quick fix, ∆Tmin and ∆Tmax , from each neighboring regime (NB and FB), • Linear evolution in between (log-log plot!).
Condensation and boiling heat transfer 25/42

SUB-COOLING EFFECT

• Liquid sub-cooling, TL < Tsat , ∆Tsub • Ivey & Morris (1961) qC,sub = qC,sat 1 + 0, 1

Tsat − TL

ρL ρV

3/4

CP L ∆Tsub hLV

Condensation and boiling heat transfer

26/42

CONVECTIVE BOILING REGIMES

→ Increasing heat flux, constant flow rate → 1. Onset of nucleate boiling 2. Nucleate boiling suppression 3. Liquid film dry-out 4. Super-heated vapor
27/42

Condensation and boiling heat transfer

BACK TO THE EQUILIBRIUM (STEAM) QUALITY
• Regime boundaries depend very much on z. Change of variable, xeq • Equilibrium quality, non dimensional mixture enthalpy, xeq h − hLsat hLV

• Energy balance, low velocity, stationary flows, dh dxeq = M hLV = qP M dz dz • Uniform heat flux, xeq linear in z. Close to equilibrium, xeq ≈ x • According to the assumptions of the HEM, 0 > xeq 0 < xeq < 1 1 < xeq single-phase liquid (sub-cooled) two-phase, saturated single-phase vapor (super-heated)

Condensation and boiling heat transfer

28/42

CONVECTIVE HEAT TRANSFER IN VERTICAL FLOWS

Boiling flow description • Constant heat flux heating, • Fluid temperature evolution, (Tsat ), • Wall temperature measurement, • Flow regime, • Heat transfer controlling mechanism.

Condensation and boiling heat transfer

29/42

From the inlet, flow and heat transfer regimes, • Single-phase convection • Onset of nucleate boiling, ONB • Onset of signifiant void, OSV • Important points for pressure drop calculations, flow oscillations.
Condensation and boiling heat transfer 30/42

• Nucleate boiling suppression, • Liquid film dry-out, boiling crisis (I), • Single-phase vapor convection.
Condensation and boiling heat transfer 31/42

HEAT TRANSFER COEFFICIENT

DO: dry-out, DNB: departure from nucleate boiling (saturated, sub-cooled), PDO: post dry-out, sat FB: saturated film boiling, Sc Film B: sub-cooled film boiling

Condensation and boiling heat transfer

32/42

BOILING SURFACE

Condensation and boiling heat transfer

33/42

S-Phase conv: single-phase convection, PB: partial boiling, NB: nucleate boiling (S, saturated, Sc, subcooled), FB: film boiling, PDO: post dry-out, DO: dry-out, DNB: departure from nucleate boiling.
Condensation and boiling heat transfer 34/42

SINGLE-PHASE FORCED CONVECTION
• Forced convection (Dittus & Boelter, Colburn), Re > 104 , Nu hD = 0, 023Re0,8 Pr0,4 , kL Re = GD , µL PrL = µL CP L kL

• Fluid temperature, TF , mixing cup temperature, that corresponding to the area-averaged mean enthalpy. • Transport properties at Tav – Local heat transfer coefficient, q h(TW − TF ), Tav = 1 (TW + TF ) 2

– Averaged heat transfer coefficient (length L), q ¯ ¯ ¯ ¯ h(TW − TF ), 1 ¯ TF = (TF in + TF out ), 2 Tav = 1 ¯ ¯ (TW + TF ) 2

• Always check the original papers...
Condensation and boiling heat transfer 35/42

NUCLEATE BOILING & SIGNIFICANT VOID

• Onset and suppression of nucleate boiling, ONB, (Frost & Dzakowic, 1967), TP − Tsat = 8σqTsat kL ρV hLV
0,5

PrL

• Onset of signifiant void, OSV, (Saha & Zuber, 1974) qD Nu = = 455, kL (Tsat − TL ) q St = = 0, 0065, GCP L (Tsat − TL ) P´ < 7 104 , thermal regime e P´ > 7 104 , hydrodynamic regime e
36/42

Condensation and boiling heat transfer

DEVELOPPED BOILING AND CONVECTION

• Weighting of two mechanisms, xeq > 0 (Chen, 1966) – Nucleate boiling(Forster & Zuber, 1955), S, suppression factor,same model for pool boiling, – Forced convection, Dittus Boelter, F , amplification factor, h = hFZ S + hDB A  1 1 = 1 + 2.53 10−6 (ReF 1.25 )1.17 , F = 2.35(1/X + 0.213)0.736 S
Condensation and boiling heat transfer

1/X

0.1

1/X > 0.1
37/42

CHEN CORRELATION (CT’D)
• Nucleate boiling, hF Z • Forced convection
0.79 0.45 kL CpL ρ0.49 L = 0.00122 0.29 0.24 0.24 (TW − Tsat )0.24 ∆p0.75 sat σµL hLV ρV

kL 0.8 0.4 Re PrL hDB = 0.023 D • From Clapeyron relation, slope of saturation line, ∆psat hLV (TW − Tsat ) = Tsat (vV − vL )

• Non dimensional numbers definitions, GD(1 − xeq ) , Re = µL X= 1 − xeq xeq
0.9

ρV ρL

0.5

µL µV

0.1

,

PrL =

µL CpL kL

• NB: implicit in (TW − Tsat ).
Condensation and boiling heat transfer 38/42

CRITICAL HEAT FLUX
• No general model. – Dry-out, multi-field modeling – DNB, correlations or experiment in real bundles • Very sensitive to geometry, mixing grids, • Recourse to experiment is compulsory, • In general, qCHF (p, G, L, ∆Hi , ...), artificial reduction of dispersion. • For tubes and uniform heating, no length effect, qCHF (p, G, xeq ) – Tables by Groenveld, – Bowring (1972) correlation, best for water in tubes – Correlation by Katto & Ohno (1984), non dimensional, many fluids, regime identification.

Condensation and boiling heat transfer

39/42

MAIN PARAMETERS EFFECT ON CHF
After Groeneveld & Snoek (1986), tube diameter, D = 8 mm.
10000 9000 8000 7000 CHF[kW/m ] 6000 5000 4000 3000 2000 1000 0 −20 0 20 40 exit quality [%] 60 80 100 0 −20 0 20 40 exit quality [%] 60 80 100
2

G=1000 kg/s/m P= 10 bar P= 30 bar P= 45 bar P= 70 bar P= 100 bar P= 150 bar P= 200 bar

2

6000

5000

p=150 bar G= 0 kg/s/m2 G=1000 kg/s/m2 G=5000 kg/s/m2 G=7500 kg/s/m2

4000 CHF[kW/m2]

3000

2000

1000

• Generally decreases with the increase of the exit quality. qCHF → 0, xeq → 1. • Generally increases with the increase of the mass flux, • CHF is non monotonic with pressure.
Condensation and boiling heat transfer 40/42

MORE ON HEAT TRANSFER
• Boiling and condensation, – Delhaye (1990) – Delhaye (2008) – Roshenow et al. (1998) – Collier & Thome (1994) – Groeneveld & Snoek (1986) • Single-phase, – Bird et al. (2007) – Bejan (1993)

Condensation and boiling heat transfer

41/42

REFERENCES
Bejan, A. (ed). 1993. Heat transfer. John Wiley & Sons. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. 2007. Transport phenomena. Revised second edn. John Wiley & Sons. Collier, J. G., & Thome, J. R. 1994. Convective boiling and condensation. third edn. Oxford: Clarendon Press. Delhaye, J. M. 1990. Transferts de chaleur : ebullition ou condensation des corps purs. Techniques de l’ing´nieur. e Delhaye, J.-M. 2008. Thermohydraulique des r´acteurs nucl´aires. Collection g´nie atome e e ique. EDP Sciences. Groeneveld, D. C., & Snoek, C. V. 1986. Multiphase Science and Technology. Vol. 2. Hemisphere. G. F. Hewitt, J.-M. Delhaye, N. Zuber, Eds. Chap. 3: a comprehensive examination of heat transfer correlations suitable for reactor safety analysis, pages 181–274. Raithby, G. D., & Hollands, K. G. 1998. Handbook of heat transfer. 3rd edn. McGrawHill. W. M. Roshenow, J. P. Hartnett and Y. I Cho, Eds. Chap. 4-Natural convection, pages 4.1–4.99. Roshenow, W. M., Hartnett, J. P., & Cho, Y. I. 1998. Handbook of heat transfer. 3rd edn. McGraw-Hill.

Condensation and boiling heat transfer

42/42

References: Bejan, A. (ed). 1993. Heat transfer. John Wiley & Sons. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. 2007. Transport phenomena. Revised second edn. John Wiley & Sons. Collier, J. G., & Thome, J. R. 1994. Convective boiling and condensation. third edn. Oxford: Clarendon Press. Delhaye, J. M. 1990. Transferts de chaleur : ebullition ou condensation des corps purs. Techniques de l’ing´nieur. e Delhaye, J.-M. 2008. Thermohydraulique des r´acteurs nucl´aires. Collection g´nie atome e e ique. EDP Sciences. Groeneveld, D. C., & Snoek, C. V. 1986. Multiphase Science and Technology. Vol. 2. Hemisphere. G. F. Hewitt, J.-M. Delhaye, N. Zuber, Eds. Chap. 3: a comprehensive examination of heat transfer correlations suitable for reactor safety analysis, pages 181–274. Raithby, G. D., & Hollands, K. G. 1998. Handbook of heat transfer. 3rd edn. McGrawHill. W. M. Roshenow, J. P. Hartnett and Y. I Cho, Eds. Chap. 4-Natural convection, pages 4.1–4.99. Roshenow, W. M., Hartnett, J. P., & Cho, Y. I. 1998. Handbook of heat transfer. 3rd edn. McGraw-Hill. Condensation and boiling heat transfer 42/42

You May Also Find These Documents Helpful

  • Better Essays

    Lab 5

    • 1114 Words
    • 5 Pages

    4. Incorpera, F.P., and De Witt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley&Sons, 4th ed., 1996.…

    • 1114 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    In my view the two most important heat transport processes are convection and conduction that are taking place when blowing into a hot bowl of soap.…

    • 346 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    Drag on a Cylinder

    • 3180 Words
    • 13 Pages

    Munson, B. R., Young, D. F., Okiishi, T. H., & Huebsch, W. W. (2009). Fundamentals of fluid mechanics. (6th ed.). Jefferson City: John Wiley & Sons Inc.…

    • 3180 Words
    • 13 Pages
    Powerful Essays
  • Good Essays

    Heat Transfer Lab Report

    • 927 Words
    • 4 Pages

    If the material of the wall is homogeneous and has a thermal conductivity C (the constant of…

    • 927 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Incropera, Frank and DeWitt, David, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, USA, 2002.…

    • 7865 Words
    • 32 Pages
    Good Essays
  • Good Essays

    Numerical simulations were performed to predict the film cooling effectiveness and the associated heat transfer coefficient in a 1-1/2…

    • 8608 Words
    • 35 Pages
    Good Essays
  • Best Essays

    Outtagarts, A., Haberschill, P., Lallemand, M. 1997, The transient response of an evaporator fed through an…

    • 4030 Words
    • 17 Pages
    Best Essays
  • Good Essays

    Two Phase Flow Correlation

    • 8771 Words
    • 36 Pages

    Friction pressure drop in twophase flow. A. I. Ch. E. 10 (1), 38, 1964. Fang, X.D., Xu, Y., Zhou, Z.R. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. Nucl. Eng. Des. 241, 897–902, 2011. Friedel, L. Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. Eur. Two-phase Flow Group Meeting Pap. E2 18, 485–492, 1979. Garimella, S., Agarwal, A., Killion, J.D. Condensation pressure drop in circular microchannels. Heat Transfer Eng. 26, 1–8, 2005. Gronnerud, R., Investigation of liquid hold-up, flow resistance and heat transfer in circulation type evaporators, part IV: Two-phase flow resistance in boiling refrigerants. Annexe 1972-1, Bulletin, de l’Institut du Froid, 1979. Heppner, D. B., King, C. D., Littles, J. W. Zero-G experiments in twophase fluids flow patterns, in: The ICES Conf., San Francisco, CA, ASME paper No. TS-ENAs-24, 1975. Hurlbert, K.M., Witte, L.C., Best, F.R., Kurwitz, C. Scaling two-phase flows to Mars and Moon gravity conditions. Int. J. Multiphase Flow 30, 351–368, 2004. Lee, H.J., Lee, S.Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int. J. Multiphase Flow 27, 783–796, 2001. Lee, J., Mudawar, I. Two-phase flow in high-heat-flux micro-channel he at sink for refrigeration cooling applications: Part I—pressure drop characteristics. Int. J. Heat Mass Transfer 48, 928–940, 2005. Lockhart, R.W., Martinelli, R.C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45 (1), 39–48, 1949. McAdams, W.H., Wood, W.K., Bryan, R.L. Vaporization inside horizontal tubes—II—Benzene-oil mixtures. Trans. ASME 66 (8), 671– 684, 1942. Miller, K.M., Ungar, E. K., Dzenitis, L. M., Wheeler, M. Microgravity two-phase pressure drop data in smooth tubing, in: Proc. ASME Winter Meeting, New Orleans, 1993. Mishima, K., Hibiki, T. Some characteristics of air–water flow in small diameter vertical tubes. Int. J. Multiphase Flow 22, 703–712, 1996. Moody, L.F. Friction factors for pipe flow. Trans. ASME, 671–684, 1944. Muller-Steinhagen, H., Heck, K. A simple friction pressure drop correlation for two-phase flow pipes. Chem. Eng. Prog. 20, 297–308, 1986.…

    • 8771 Words
    • 36 Pages
    Good Essays
  • Satisfactory Essays

    Force to Submit Something

    • 1306 Words
    • 6 Pages

    • Munson, B R, Young, D F, Okiishi, T H, and Huebsch, W W, Fundamentals of Fluid Mechanics, 6th Edition, John…

    • 1306 Words
    • 6 Pages
    Satisfactory Essays
  • Powerful Essays

    Chem

    • 8385 Words
    • 34 Pages

    References: 23 R. C. Reid, J. M. Prausnitz and T. K. Sherwood, TheProperties of Gases and Liquids, McGraw-Hill, New York, 3rd edn.,…

    • 8385 Words
    • 34 Pages
    Powerful Essays
  • Powerful Essays

    Fellow ASME Heat Transfer Laboratory, Scool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907…

    • 6221 Words
    • 25 Pages
    Powerful Essays
  • Good Essays

    Peng, X. F., Peterson, G.P., 1994. Frictional flow characteristics of water flowing through rectangular microchannels, Experimental Heat Transfer, 7, 249-264. Philips, R. J. 1988. Forced-convection, liquid-cooled microchannel heat sinks, MS Thesis, Lincoln Laboratory, Massachusetts Institute of Technology, Cambridge MA. Shah, R. K., London, A.L. 1978. Laminar Flow Forced Convection in Ducts, New York, Academic Press. Shen, S., Xu, J.L., Zhou, J.J., Chen, Y., 2006. Flow and heat transfer in microchannels with rough wall surface, Energy Conservation and Management, 47, 1311-1325. Steinke, M. E., Kandlikar, S.G., 2006. Single-phase liquid friction factors in microchannels, International Journal of Thermal Sciences, 45, 1073-1083. White, F. M., 1991. Viscous Fluid Flow, New York, McGraw-Hill. Comsol Multiphysics Modeling guide, Version 3.5, 2008. Comsol Multiphysics Reference guide, Version 3.5, 2008. Comsol Multiphysics User‟s guide, Version 3.5, 2008.…

    • 10974 Words
    • 44 Pages
    Good Essays
  • Good Essays

    Thermo

    • 343 Words
    • 2 Pages

    In order to carry out a heat transfer experiment simultaneously with measurement of vapour pressure, it is required that the rates of heating and cooling of the pressure vessel, the rate of energy addition by the heater and the ambient temperature are recorded.…

    • 343 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    Bibliography: * Heat and Mass Transfer by D.S. kumar * www.wikipedia.org * Holman, J. P. (1990) Heat Transfer. 7th ed. McGraw-Hill * Incropera, Frank P. and DeWitt, David P. (1996) Fundamentals of Heat and Mass Transfer. 4th ed. Willey * Lienhard IV, John H. and Lienhard V, John H. (2002) Heat Transfer Textbook. 3rd ed. Lienhard IV, John H. and Lienhard V, John H. * www.google.com * Engineering of Materials and Metallurgy by O.P Khanna * Engineering Metallurgy by Y Lakhtin. * Manufacturing Processes by P.C Sharma.…

    • 6966 Words
    • 28 Pages
    Powerful Essays
  • Good Essays

    Heat Transfer Letcure 1

    • 1009 Words
    • 5 Pages

    Radiation  Conduction  Conduction is a flow of heat in a substance due to exchange of energy between molecules having high energy and molecules having less energy Conduction in solids  Conduction occur at molecular scale, the hotter the molecules with greater energy imparting to the adjacent molecules at low energy level 1. Lattice Vibration 2. Motion of free electrons (Metallic solid)…

    • 1009 Words
    • 5 Pages
    Good Essays

Related Topics