Biology - Blood Components and Blabla

Only available on StudyMode
  • Download(s) : 226
  • Published : February 26, 2012
Open Document
Text Preview
Biology – Problem Solving and Communication
Question 1

Question 2
There are many products of whole blood which can be extracted (via the process of centrifugation) for further use for patients who require specific blood products. These components include red blood cells, plasma and platelets where these products are then used for many purposes in the medical field. Red blood cells (RBC), which can be turned into a concentrate with 2 times more red blood cells than whole blood, is critical in treating patients with anaemia (a deficiency in the quantity or efficiency of red blood cells) by increasing the oxygen-carrying capabilities within the body of a patient. and are essential in replacing red blood cells that have been lost due to accidents, surgical procedures or from illnesses such as leukaemia. However there are limitations for the use of these packed RBCs, as the oxygen delivery to tissues are restricted. It is also indicated that patients who received these transfusions had a higher rate of infections and death compared to those who didn’t receive RBC concentrate. Plasma is a protein-salt solution which constitutes as 55% of the volume of blood. This liquid is where platelets, red and white blood cells are located. Plasma can be dried out into a powder or frozen which contains clotting factors to treat patients with disorders such as haemophilia (specific clotting factors are missing in the blood, which then results in excessive bleeding) and sepsis (severe illness where the bloodstream is overwhelmed by bacteria). Frozen plasma contains all necessary clotting factors and are free of red blood cells, white blood cells and platelets. It can serve as a medium of exchange for vital minerals (such as sodium and potassium) for patients who require clotting effects immediately (e.g. major blood transfusions) which in return, aids the body in maintaining a proper balance for optimum cell function. The allowable volume of plasma being extracted from a donor is restricted to approximately only 10-15 litres a year due to the negative effects on albumin (water soluble protein molecules found within blood) levels. Extraction of plasma can also lead to high blood pressure, so the amount taken from a donor must be carefully monitored. Platelets are small fragments of cells made from the bone marrow which is usually congregated in large numbers where it is essential for the coagulation of blood. Platelets are taken from the donor through the process of aspheresis, where the blood is drawn out and placed centrifuged to separate it from the plasma and other components of blood. The result is concentrated platelets where there is six times as much platelets compared to the concentration within whole blood. This platelet concentrate are then transferred to patients with diseases where the platelets do not function properly within the blood of the patient. However, there are also disadvantages with platelet transfusions due to the significant risk of immunologic disorders and bacteria within the platelets which can be transferred through to the patient.

Question 3
The need for blood is universal; hence blood is in high demand. There is not enough blood donations which can keep up with the demand, therefore blood substitutes are being made to further reduce the overwhelming need for hospitals around the world to gather blood. The HIV crisis during the 1980s triggered the further development of artificial blood to prevent the spread of HIV from donor blood supplies. Blood has a primary function of the removal of carbon dioxide and transportation of oxygen to every cell, tissue and organ of the body. This is the basic idea of what a blood substitute is like; it imitates the oxygen-carrying capabilities of red blood cells. However artificial blood is not a supplementary for real blood and so it only acts as a temporary supply of blood for the bone marrow to create a sufficient amount of blood cells for the body to function...
tracking img