Topics: Bioinformatics, DNA, Protein Pages: 14 (3779 words) Published: May 18, 2011
From Wikipedia, the free encyclopedia
Jump to: navigation, search
For the journal, see Bioinformatics (journal).
Map of the human X chromosome (from the NCBI website). Assembly of the human genome is one of the greatest achievements of bioinformatics. Bioinformatics is the application of statistics and computer science to the field of molecular biology. The term bioinformatics was coined by Paulien Hogeweg and Ben Hesper in 1978 for the study of informatic processes in biotic systems[1]. Its primary use since at least the late 1980s has been in genomics and genetics, particularly in those areas of genomics involving large-scale DNA sequencing. Bioinformatics now entails the creation and advancement of databases, algorithms, computational and statistical techniques and theory to solve formal and practical problems arising from the management and analysis of biological data. Over the past few decades rapid developments in genomic and other molecular research technologies and developments in information technologies have combined to produce a tremendous amount of information related to molecular biology. It is the name given to these mathematical and computing approaches used to glean understanding of biological processes. Common activities in bioinformatics include mapping and analyzing DNA and protein sequences, aligning different DNA and protein sequences to compare them and creating and viewing 3-D models of protein structures. The primary goal of bioinformatics is to increase the understanding of biological processes. What sets it apart from other approaches, however, is its focus on developing and applying computationally intensive techniques (e.g., pattern recognition, data mining, machine learning algorithms, and visualization) to achieve this goal. Major research efforts in the field include sequence alignment, gene finding, genome assembly, drug design, drug discovery, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, genome-wide association studies and the modeling of evolution.

|Contents | |[hide] | |1 Introduction | |2 Major research areas | |2.1 Sequence analysis | |2.2 Genome annotation | |2.3 Computational evolutionary biology | |2.4 Analysis of gene expression | |2.5 Analysis of regulation | |2.6 Analysis of protein expression | |2.7 Analysis of mutations in cancer | |2.8 Comparative genomics | |2.9 Modeling biological systems | |2.10 High-throughput image analysis | |2.11 Structural Bioinformatic Approaches | |2.11.1 Prediction of protein structure | |2.11.2 Molecular Interaction | | Docking algorithms | |3 Software and tools | |3.1 Web services in bioinformatics | |4 See also | |5 References...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Major Research Areas of Bioinformatics Essay
  • Bioinformatics Paper
  • Worldwide Bioinformatics Market 2014 to 2020 – Industry Survey, Market Size Essay
  • Bioinformatics Research Paper
  • Essay on Bioinformatics
  • Bioinformatics Essay
  • Intelligent Systems, Robotics, Bioinformatics Essay
  • Essay on Bioinformatics Lab 9

Become a StudyMode Member

Sign Up - It's Free