Biogeochemical Cycles

Only available on StudyMode
  • Download(s) : 176
  • Published : August 25, 2012
Open Document
Text Preview
The Carbon Cycle is a complex series of processes through which all of the carbon atoms in existence rotate. The same carbon atoms in your body today have been used in countless other molecules since time began. The wood burned just a few decades ago could have produced carbon dioxide which through photosynthesis became part of a plant. When you eat that plant, the same carbon from the wood which was burnt can become part of you. The carbon cycle is the great natural recycler of carbon atoms. Unfortunately, the extent of its importance is rarely stressed enough. Without the proper functioning of the carbon cycle, every aspect of life could be changed dramatically. We believe that it's vital to understand how the carbon cycle works in order to see the danger of it not working. Therefore, let's look at a sample carbon cycle and explore how carbon atoms move through our natural world. Plants, animals, and soil interact to make up the basic cycles of nature. In the carbon cycle, plants absorb carbon dioxide from the atmosphere and use it, combined with water they get from the soil, to make the substances they need for growth. The process of photosynthesis incorporates the carbon atoms from carbon dioxide into sugars. Animals, such as the rabbit pictured here, eat the plants and use the carbon to build their own tissues. Other animals, such as the fox, eat the rabbit and then use the carbon for their own needs. These animals return carbon dioxide into the air when they breathe, and when they die, since the carbon is returned to the soil during decomposition. The carbon atoms in soil may then be used in a new plant or small microorganisms. Ultimately, the same carbon atom can move through many organisms and even end in the same place where it began. Herein lies the fascination of the carbon cycle; the same atoms can be recycled for millennia!

Carbon cycle
Part V of "Matter cycles": The carbon cycle
Carbon is a very important element, as it makes up organic matter, which is a part of all life. Carbon follows a certain route on earth, called the carbon cycle. Through following the carbon cycle we can also study energy flows on earth, because most of the chemical energy needed for life is stored in organic compounds as bonds between carbon atoms and other atoms. The carbon cycle naturally consists of two parts, the terrestrial and the aquatic carbon cycle. The aquatic carbon cycle is concerned with the movements of carbon through marine ecosystems and the terrestrial carbon cycle is concerned with the movement of carbon through terrestrial ecosystems.

The carbon cycle is based on carbon dioxide (CO2), which can be found in air in the gaseous form, and in water in dissolved form. Terrestrial plants use atmospheric carbon dioxide from the atmosphere, to generate oxygen that sustains animal life. Aquatic plants also generate oxygen, but they use carbon dioxide from water. The process of oxygen generation is called photosynthesis. During photosynthesis, plants and other producers transfer carbon dioxide and water into complex carbohydrates, such as glucose, under the influence of sunlight. Only plants and some bacteria have the ability to conduct this process, because they possess chlorophyll; a pigment molecule in leaves that they can capture solar energy with.The overall reaction of photosynthesis is: carbon dioxide + water + solar energy -> glucose + oxygen 6 CO2 + 6 H2O + solar energy -> C6H12O6 + 6 O2

The oxygen that is produced during photosynthesis will sustain non-producing life forms, such as animals, and most micro organisms. Animals are called consumers, because they use the oxygen that is produced by plants. Carbon dioxide is released back into the atmosphere during respiration of consumers, which breaks down glucose and other complex organic compounds and converts the carbon back to carbon dioxide for reuse by producers.

Carbon that is used by producers, consumers and decomposers cycles fairly rapidly...
tracking img