Question 1: How does batching strategy affect throughput?

How many additional customers can Benihana service with batching? What is the impact of batching during peak and non-peak periods? Challenge 1: Batching Dining Room Customers Challenge 1: Batching Dining Room Customers Scenario Name| Nightly Profit| Total Revenue| Revenue Bar| Revenue Dinner | Use Batching| Scenario 5| $121.80| $3,155.34| $403.34| $2,752.00| Yes| Scenario 4| $121.80| $3,155.34| $403.34| $2,752.00| Yes| Scenario 3| -$201.58| $2,909.82| $871.32| $2,038.50| No| Scenario 2| -$201.58| $2,909.82| $871.32| $2,038.50| No| Scenario 1| -$201.58| $2,909.82| $871.32| $2,038.50| No|

BatchingNo Batching
1. Customer lost due to batching = 24
Customer lost due to no batching = 9
Therefore, Benihana can serve 95-24 = 71 additional customers with batching.

2. During peak hours Benihana can serve more customers with batching in there dining area, and thus generate more revenue compared to no batching. Batching will reduce people in bar area and will help to get more people in the dining area.

...-------------------------------------------------
Primenumber
A primenumber (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a primenumber is called a composite number. For example 5 is prime, as only 1 and 5 divide it, whereas 6 is composite, since it has the divisors 2 and 3 in addition to 1 and 6. The fundamental theorem of arithmetic establishes the central role of primes in number theory: any integer greater than 1 can be expressed as a product of primes that is unique up to ordering. This theoremrequires excluding 1 as a prime.
-------------------------------------------------
Number theory
Number theory is a branch of pure mathematics devoted primarily to the study of theintegers. Number theorists study primenumbers (which, when multiplied, give all the integers) as well as the properties of objects made out of integers (such as rational numbers) or defined as generalizations of the integers (such as, for example, algebraic integers).
Integers can be considered either in themselves or as solutions to equations (diophantine geometry). Questions in number...

...Name___________________________________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Evaluate the expression for the given values of x and y. |x| |y| 1) + ; x = 2 and y = -4 x y A) 2 Simplify the algebraic expression. 2) -4(2x - 5) - 4x + 9 A) -12x + 29 Simplify the exponential expression. 3) (x3)6 A) 6x18 Rationalize the denominator. 3 4) 17 + 2 A) 51 - 2 3 13 B) 51 + 2 3 13 C) 3 51 + 17 34 3 D) 51 - 2 3 19 B) x9 C) x18 D) 6x3 B) 4x + 29 C) -12x - 11 D) 12x + 29 B) -1 C) 0 D) 1
Find the product. 5) (x - 3)(x2 + 3x + 9) A) x3 - 6x2 - 6x - 27 B) x3 + 27 C) x3 - 27 D) x3 + 6x2 + 6x - 27
Factor the trinomial, or state that the trinomial is prime. 6) 20x2 + 23x + 6 A) (20x + 3)(x + 2) B) (4x - 3)(5x - 2) C) (4x + 3)(5x + 2) D) Prime
Factor completely, or state that the polynomial is prime. 7) 28x2 y - 28y - 28x2 + 28 A) (2y - 7)(7x - 2)(7x + 2) C) (7y - 7)(2x - 2)(2x + 2) Solve the system by the addition method. 8) 3x + 7y = 40 3x + 2y = 50 A) {(-2, 18)} Solve and check the linear equation. 9) 2x - 4 + 5(x + 1) = -2x - 3 A) {- 2} B) {4 } 3 C) {4 } 9 D) {- 6} B) {(-18, 3)} C) {(-18, 7)} D) {(18, -2)} B) (28y - 28)x2 + 4(-7y + 7) D) (28x2 - 28)y + 7(4 - 4x2 )
1
Solve the equation. x x 10) 27 - = 2 7 A) { 243 } 14 B) {42} C) {3} D) { 243 } 2
First, write the value(s) that make the denominator(s) zero. Then solve the equation. x-1 x+9 11) +3 = 4x x A) x ≠ 0;...

...COMPARATIVE ANALYSIS OF DATA 1 (RULES) AND DATA 2 (ITEMS)
John Paul Llenos (Organizer)
Patricia Lorica (Secretary)
CED 02 – 601P
Language and Literature Assessment
Rules
Items
Error
Correct
Error
Correct
11 – 47
29 – 45
25 – 44
1 – 37
9 – 36
23 – 35
5 – 30
17 – 30
27 – 30
3 – 29
15 – 28
21 – 27
13 – 27
7 – 19
19 – 17
22 – 46
8 – 35
12 – 35
26 – 31
20 – 30
24 – 29
30 – 26
16 – 25
4 – 21
18 – 20
2 – 17
10 – 17
14 – 12
28 – 10
6 – 1
This paper aims to compare the data’s 1 and 2 through comparative analysis. It can be seen above the top items that obtained the most number of mistakes.
In rules data, there were 47 and 45 students who got items number 11 and 29 wrong. In the same manner with the items data, wherein 46 students got it wrong in item number 22. Items 11 and 29 hold Dangling Modifier as the correct answer. Therefore, error data articulates that Dangling Modifier is one of the grammar and style that needs special attention to the students subjected in this analysis.
In conclusion, though there is only a little difference between the two items. There’s much difference in the overall items between RULES data and ITEMS data. In rules data, most of the students got errors in most of the items compared to the items dat. We noticed that the items in rules data seem more difficult than the items in items data.
70. Dora Williams
WHEN Reuben Pantier ran away and...

...GRADE 5)
CHAPTER 1 (LARGE NUMBERS) ONE MARK QUESTIONS
1. 7000 lakh = _______________________ crore. a) 7 b) 70 c) 700 d) 7000
TWO MARK QUESTIONS
1. Write 700083460 in numerals and their number names in both the systems of numeration. 2. Write the smallest and the greatest numbers using each of the digits 4, 8, 0, 1, 7, 6, 5 only once.
CHAPTER 2 (ROUNDING NUMBERS AND ESTIMATION) ONE MARK QUESTIONS
1. The municipal corporation spent Rs. 25, 37, 981 on repairing the roads (round it to the nearest ten thousand). a) 25,40,000 b) 25,30,000 c) 26,00,000 d) 25,37,000 2. Which of the following numbers could be rounded to 9700? a) 9585 b) 9755 c) 9655 d) 9645
TWO MARK QUESTIONS
1. Round off the greatest 9 – digit number to the nearest ten – lakh. 2. Estimate: 63809 – 5523.
CHAPTER 3 (OPERATIONS ON LARGE NUMBERS) ONE MARK QUESTIONS
1. If 3900 kg of onions are put into sacks and each sack holds 30 kg, how many sacks are required? a) 30 b) 130 c) 117000 d) 3900
TWO MARK QUESTIONS
1. Find the product of the successor of the greatest 3 digit number and 999.
THREE MARK QUESTIONS
1. Raj won 35 tournaments. The prize money totalled up to Rs. 6, 47,500. If he received the same amount for every tournament, how much had he earned per tournament?
CHAPTER 4 (FACTORS AND MULTIPLES) ONE MARK QUESTIONS
1. The prime factorization of 27 is...

... 27. nothing up Stone down
28. Queen down Stone and King up
29. nothing up Stone down
30. Prince down Stone up
31. nothing up Stone down
32. King down Prince up
33. Stone up Prince down
34. One of 9 otherwise identical balls is overweight. How can it be identified after 2 weighings with an old balance?
Ans: Weigh 3 against 3, then you'll know which group of 3 contains the heavy ball. Pick 2 balls from that group and weigh one against the other.
35. One of 27 otherwise identical balls is overweight. How can it be identified after 3 weighings with an old balance?
Ans: Weigh 9 against 9, then 3 against 3.
36. How many ways can you put 10 sweets into 3 bags so that each bag contains an odd number of sweets?
Ans 15 solutions. The first trick is to realise that if you put one bag inside another, then sweets in the inner bag are also in the outer bag. The only workable configuration is to put one bag inside another and leave the third alone. The answers can be obtained using the following octave script, where bag b is inside bag a
37. for a=0:10
38. for b=0:(10-a)
39. c=10-a-b;
40. if (rem((a+b),2)==1 && rem(b,2)==1 && rem(c,2)==1)
41. fprintf('a=%d b=%d c=%d\n',a,b,c)
42. end
43. end
44. end
1. A man has to take a hen, a fox, and some corn across a river. He can only take one thing across at a time. Unless the man is present the fox will eat the hen...

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":35546668,"categoryName":"Organizations","categoryParentId":"3","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":2,"pageRange":"1-2","totalPages":2}},"access":"premium","title":"Benihana: Prime Number and Scenario","additionalIds":[17,30,298,1],"additional":["Literature","Travel","Travel\/Accommodations","Architecture \u0026 Design"],"loadedPages":{"html":[],"text":[1,2]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/Benihana-Prime-Number-And-Scenario-925404.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.9","language":"en_US"}}