automatic gate control

Only available on StudyMode
  • Topic: Capacitor, Embedded system, Electrolytic capacitor
  • Pages : 70 (7735 words )
  • Download(s) : 15
  • Published : August 12, 2014
Open Document
Text Preview
 1.ABSTRACT

OBJECTIVE: The aim of this project is to Automate unmanned railway gate using mechatronics.

PROJECT DEFINATION:

The objective of this project is to manage the control system of railway gate using the microcontroller. When train arrives at the sensing point alarm is triggered at the railway crossing point so that the people get intimation that gate is going to be closed. Then the control system activates and closes the gate on either side of the track. once the train crosses the other end control system automatically lifts the gate. For mechanical operation of the gates 1.8 step angle stepper motors are employed. Here we are using embedded controller built around the 8051 family (AT89C52) for the control according to the data pattern produced at the input port of the micro controller, the appropriate selected action will be taken..The logic is produced by the program written in Embedded C language. The software program is written, by using the KEIL micro vision environment. The program written is then converted in HEX code after simulation and burned on to microcontroller using FLASH micro vision.

WORKING METHODOLOGY: 

Present project is designed using 8051 microcontroller to avoid railway accidents happening at unattended railway gates, if implemented in spirit. This project utilizes two powerful IR transmitters and two receivers; one pair of transmitter and receiver is fixed at up side (from where the train comes) at a level higher than a human being in exact alignment and similarly the other pair is fixed at down side of the train direction. Sensor activation time is so adjusted by calculating the time taken at a certain speed to cross at least one compartment of standard minimum size of the Indian railway. We have considered 5 seconds for this project. Sensors are fixed at 1km on both sides of the gate. We call the sensor along the train direction as ‘foreside sensor’ and the other as ‘after side sensor’. When foreside receiver gets activated, the gate motor is turned on in one direction and the gate is closed and stays closed until the train crosses the gate and reaches aft side sensors. When aft side receiver gets activated motor turns in opposite direction and gate opens and motor stops. Buzzer will immediately sound at the fore side receiver activation and gate will close after 5 seconds, so giving time to drivers to clear gate area in order to avoid trapping between the gates and stop sound after the train has crossed.

GATE CONTROL

Railways being the cheapest mode of transportation are preferred over all the other means .When we go through the daily newspapers we come across many railway accidents occurring at unmanned railway crossings. This is mainly due to the carelessness in manual operations or lack of workers. We, in this project has come up with a solution for the same. Using simple electronic components we have tried to automate the control of railway gates. As a train approaches the railway crossing from either side, the sensors placed at a certain distance from the gate detects the approaching train and accordingly controls the operation of the gate. Also an indicator light has been provided to alert the motorists about the approaching train.

2.INTRODUCTION

Introduction:
The objective of this project is to manage the control system of railway gate using the microcontroller. When train arrives at the sensing point alarm is triggered at the railway crossing point so that the people get intimation that gate is going to be closed. Then the control system activates and closes the gate on either side of the track. once the train crosses the other end control system automatically lifts the gate. For mechanical operation of the gates 1.8 step angle stepper motors are employed. Here we are using embedded controller built around the...
tracking img