Authentication of Paintings

Only available on StudyMode
  • Download(s) : 1038
  • Published : January 23, 2006
Open Document
Text Preview
Paintings can be accurately authenticated through both forensic and stylistic analysis that renders subjective connoisseurship obsolete. Under the circumstances, this essay is only about a few of the many scientific tools available and how they can be used to authenticate paintings.

Forensic science studies anomalies in the chemical and physical composition of paintings. This includes the paint's ingredients, the chemical makeup of the canvas or panel, and markings that lie below the paint surface. Analysing such anomalies is critical to gaining understanding of the painting's composition, origin and age. For example, scientists may uncover a forged 16th century Titian painting it contains zinc-white paint.

Science studies art opposite the way that a connoisseur would. While the connoisseur generally tries to expand the opus of artwork, forensics aims to exclude forgeries. This sort of "guilty until innocent" approach that forensic science takes to art research is one whereby a work is not considered authentic until its attributes conform to set standards.

Forensic analysis also offers critical insights into a painting's style and physical composition. Even if a forged painting is made using authentic materials, forensics can reveal anomalies in its content or other features. For example, a forged Titian can be eliminated if the paint's copper content does not conform to established parameters, which is possible even if the forger had used the correct types of paints.

Basically, there are two types of forensic analysis. The first one involves photographic techniques that use infrared, X-ray and ultraviolet light. This is the most common form of scientific test, but its major weakness is that it does not study actual samples.

Infrared Reflectography identifies markings or drawings underneath the painted surface. In the old masters, under-drawings were often drawn directly on the canvas as a sketch for the painting. Examining under-drawings can help to establish the painting's authenticity and can be compared against the artist's style. This radiation can also detect authentic signatures indistinguishable to the naked eye, or reveal fake signatures that were added after the completion of a forgery.

Infra-red light lies just outside the visible spectrum. It overlaps with the red area of the spectrum and the microwave region. Conservators use wavelengths of radiation from the near infra-red part of the spectrum – mostly in the range of 750–2000 nanometres. This relatively long, low frequency wavelength is able to penetrate through the upper layers of a painting or work on paper, such as oil paint, to the drawing underneath. An infra-red reflectogram is created by capturing an image of the infra-red wavelengths that are reflected into a camera lens.

Infra-red examination is commonly used to look at an artist's working technique. It provides clues as to how a work of art has been constructed, and often gives an indication of the materials that the artist used. As some paints and varnishes can appear transparent in infra-red light, details hidden beneath the surface may be revealed. Graphite pencil, charcoal lines and other carbon-based drawing media used during the early stages of developing a work of art are enhanced using infra-red reflectography.

X-ray photography uses short-wave radiation to detect alterations in a painting, areas of a painting that have been repaired or changed and also identify certain types of X-ray absorbing pigments, like lead white and led-tin yellow. Since dates when these paints were introduced have been determined, their presence can shed light on the painting's time of execution. Coupled with UV light analysis to reveal areas of in-painting, these techniques can aid in the identification of pigments.

However, though X-ray photography is able to detect lead-based paints, it cannot quantify the paint's precise lead content. In addition these technologies are incapable of...
tracking img