Artificial Intelligence

Only available on StudyMode
  • Download(s) : 124
  • Published : October 8, 1999
Open Document
Text Preview
Artificial Intelligence

ABSTRACT

Current neural network technology is the most progressive of the artificial intelligence systems today. Applications of neural networks have made the transition from laboratory curiosities to large, successful commercial applications. To enhance the security of automated financial transactions, current technologies in both speech recognition and handwriting recognition are likely ready for mass integration into financial institutions.

RESEARCH PROJECT

TABLE OF CONTENTS
Introduction 1
Purpose 1
Source of Information 1
Authorization 1
Overview 2
The First Steps 3
Computer-Synthesized Senses 4
Visual Recognition 4
Current Research 5
Computer-Aided Voice Recognition 6
Current Applications 7
Optical Character Recognition 8
Conclusion 9
Recommendations 10
Bibiography 11

INTRODUCTION

Purpose

The purpose of this study is to determine additional areas where artificial intelligence technology may be applied for positive identifications of individuals during financial transactions, such as automated banking transactions, telephone transactions , and home banking activities. This study focuses on academic research in neural network technology . This study was funded by the Banking Commission in its effort to deter fraud.

Overview

Recently, the thrust of studies into practical applications for artificial intelligence have focused on exploiting the expectations of both expert systems and neural network computers. In the artificial intelligence community, the proponents of expert systems have approached the challenge of simulating intelligence differently than their counterpart proponents of neural networks. Expert systems contain the coded knowledge of a human expert in a field; this knowledge takes the form of "if-then" rules. The problem with this approach is that people don't always know why they do what they do. And even when they can express this knowledge, it is not easily translated into usable computer code. Also, expert systems are usually bound by a rigid set of inflexible rules which do not change with experience gained by trail and error. In contrast, neural networks are designed around the structure of a biological model of the brain. Neural networks are composed of simple components called "neurons" each having simple tasks, and simultaneously communicating with each other by complex interconnections. As Herb Brody states, "Neural networks do not require an explicit set of rules. The network - rather like a child - makes up its own rules that match the data it receives to the result it's told is correct" (42). Impossible to achieve in expert systems, this ability to learn by example is the characteristic of neural networks that makes them best suited to simulate human behavior. Computer scientists have exploited this system characteristic to achieve breakthroughs in computer vision, speech recognition, and optical character recognition. Figure 1 illustrates the knowledge structures of neural networks as compared to expert systems and standard computer programs. Neural networks restructure their knowledge base at each step in the learning process.

This paper focuses on neural network technologies which have the potential to increase security for financial transactions. Much of the technology is currently in the research phase and has yet to produce a commercially available product, such as visual recognition applications. Other applications are a multimillion dollar industry and the products are well known, like Sprint Telephone's voice activated telephone calling system. In the Sprint system the neural network positively recognizes the caller's voice, thereby authorizing activation of his calling account.

The First Steps

The study of the brain was once limited to the study of living tissue. Any attempts at an electronic...
tracking img