Analysis of Oxygen Bearing Compunds

Only available on StudyMode
  • Download(s) : 2503
  • Published : February 25, 2010
Open Document
Text Preview
Analysis of Oxygen bearing Organic compounds


The Unknown sample in the experiment can be tested to yield results such as 1° (primary), 2° (secondary), 3° (tertiary) alcohols. Tests such as the dichromate test, Tollen’s test, Lucas test, DNPH test and iodoform test would be very useful in determining the type of alcohol that the unknown sample belongs to. In the experiment, the unknown sample underwent series of testing to identify what property of alcohol it belonged to and the result was that it was a primary alcohol. It went through the Dichromate reaction, Tollen’s reaction and finally the Lucas reaction.

“The analysis of oxygen bearing organic compounds” is an experiment in which a variety of tests are available to identify a compound’s property whether it is a primary, secondary or tertiary alcohol. The tests that are included to come up with such results are interconnected with one another like that of the Dichromate test, followed by the Tollen’s test to yield an aldehyde if positive for mirror coating. The second set of procedure would again start with The Dichromate test, followed by the Tollen’s test and finally the Lucas test to yield either primary alcohol if it became turbid or secondary alcohols as it’s result if it did not turn turbid. The last set of interconnected tests were that of again, the Dichromate test, Followed by the DNPH that would determine if the unknown sample is a Ketone (positive for red-orange precipitate) or a tertiary alcohol (if negative for red-orange precipitate). But before going deeper on what these tests are, what first are the difference between their results which are the primary, secondary and the tertiary alcohols, aldehydes and ketones? Alcohols are compounds in which one or more hydrogen atoms in an alkane have been replaced by an -OH group. Note however that there are different kinds of alcohols and Alcohols are categorized into different classes depending on how the -OH group is positioned and arranged on the chain of the carbon atoms. Chemical differences between the various types are possible. First to be discussed would be the Primary (1°) alcohol, in which the carbon carrying the -OH group is only attached to one alkyl group. Meanwhile, In a secondary (2°) alcohol, the carbon with the -OH group attached is joined precisely to two alkyl groups, these alkyl groups that are attached to the carbon chain may be the same or different. In a tertiary (3°) alcohol, the carbon atom holding the -OH group is attached directly to three alkyl groups, which may be any combination of same or different [1]. On the other hand, another result that can occur would be the presence of ketones and Aldehydes. But again, to understand the experiment further, what are Ketones and aldehydes? A ketone can be characterized as either the functional group categorized by a carbonyl group (O=C) attached to two other carbon atoms or it can be identified as a chemical compound that contains a carbonyl group. A carbonyl carbon bonded to two carbon atoms makes ketones different from carboxylic acids, aldehydes, esters, amides, and other oxygen-containing compounds. The double-bond of the carbonyl group distinguishes ketones from alcohols and ethers. The simplest ketone known is acetone [2]. Lastly among the results is the aldehyde. The term aldehyde seems to have arisen from the wordds alcohol dehydrogenated. Way back in earlier times, aldehydes were at times named after the corresponding alcohols, for example, vinous aldehyde for acetaldehyde. (Vinous is from Latin vinum = wine, the traditional source of ethanol; compare vinyl.). An aldehyde is an example of an organic compound which has a terminal carbonyl group. This functional group, which consists of a carbon atom bonded to a hydrogen atom and double-bonded to an oxygen atom (chemical formula O=CH-), is commonly called the aldehyde group. The other names for aldehyde group are formyl and methanoyl group. The...
tracking img