Abdul Kalam

Only available on StudyMode
  • Topic: Rocket, Spacecraft propulsion, Hybrid rocket
  • Pages : 12 (4012 words )
  • Download(s) : 2091
  • Published : January 15, 2013
Open Document
Text Preview
* Rocket propellant is a material used by a rocket as, or to produce in a chemical reaction, the reaction mass (propulsive mass) that is ejected, typically with very high speed, from a rocket engine to producethrust, and thus provide spacecraft propulsion. * In a chemical rocket propellants undergo exothermic chemical reactions to produce hot gas. There may be a single propellant, or multiple propellants; in the latter case one can distinguish fuel and oxidizer. The gases produced expand and push on a nozzle, which accelerates them until they rush out of the back of the rocket at extremely high speed. * For smaller attitude control thrusters, a compressed gas escapes the spacecraft through a propelling nozzle. * A potential other method is that the propellant is not burned but just heated. * In ion propulsion, the propellant is made of electrically charged atoms (ions), which are electromagnetically pushed out of the back of the spacecraft. Magnetically accelerated ion drives are not usually considered to be rockets however, but a similar class of thrusters use electrical heating and magnetic nozzles. * Contents * [show]|

* -------------------------------------------------
[edit]Overview
*
*
* The Space Shuttle Atlantis during ascent.
* Rockets create thrust by expelling mass backwards in a high speed jet (see Newton's Third Law). Chemical rockets, the subject of this article, create thrust by reacting propellants within a combustion chamber into a very hot gas at high pressure, which is then expanded and accelerated by passage through a nozzle at the rear of the rocket. The amount of the resulting forward force, known as thrust, that is produced is the mass flow rate of the propellants multiplied by their exhaust velocity (relative to the rocket), as specified by Newton's third law of motion. Thrust is therefore the equal and opposite reaction that moves the rocket, and not by interaction of the exhaust stream with air around the rocket. Equivalently, one can think of a rocket being accelerated upwards by the pressure of the combusting gases against the combustion chamber and nozzle. This operational principle stands in contrast to the commonly-held assumption that a rocket "pushes" against the air behind or below it. Rockets in fact perform better in outer space (where there is nothing behind or beneath them to push against), because there is a reduction in air pressure on the outside of the engine, and because it is possible to fit a longer nozzle without suffering from flow separation, in addition to the lack of air drag. * The maximum velocity that a rocket can attain in the absence of any external forces is primarily a function of its mass ratio and its exhaust velocity. The relationship is described by the rocket equation: . The mass ratio is just a way to express what proportion of the rocket is propellant (fuel/oxidizer combination) prior to engine ignition. Typically, a single-stage rocket might have a mass fraction of 90% propellant, 10% structure, and hence a mass ratio of 10:1 . The impulse delivered by the motor to the rocket vehicle per weight of fuel consumed is often reported as the rocket propellant's specific impulse. A propellant with a higher specific impulse is said to be more efficient because more thrust is produced while consuming a given amount of propellant. * Lower stages will usually use high-density (low volume) propellants because of their lighter tankage to propellant weight ratios and because higher performance propellants require higher expansion ratios for maximum performance than can be attained in atmosphere. Thus, the Apollo-Saturn V first stage used kerosene-liquid oxygen rather than the liquid hydrogen-liquid oxygen used on its upper stages Similarly, the Space Shuttle uses high-thrust, high-density solid rocket boosters for its lift-off with the liquid hydrogen-liquid oxygen Space Shuttle Main Engines used partly for lift-off but...
tracking img