Topics: Trigonometry, Trigonometric functions, Law of cosines Pages: 3 (654 words) Published: April 1, 2013
Trigonometry (from Greek trigōnon "triangle" + metron "measure"[1]) is a branch of mathematics that studies triangles and the relationships between the lengths of their sides and the angles between those sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[2] It is also the foundation of the practical art of surveying.

Trigonometry basics are often taught in school either as a separate course or as part of a precalculus course. The trigonometric functions are pervasive in parts of pure mathematics and applied mathematics such as Fourier analysis and the wave equation, which are in turn essential to many branches of science and technology. Spherical trigonometry studies triangles on spheres, surfaces of constant positive curvature, in elliptic geometry. It is fundamental to astronomy and navigation. Trigonometry on surfaces of negative curvature is part of Hyperbolic geometry. Contents

f one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:

Sine function (sin), defined as the ratio of the side opposite the angle to the hypotenuse.

\sin A=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{a}{\,c\,}\,....
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • trigonometry Essay
  • Trigonometry Essay
  • Pythagorean Theorem: Basic trigonometry Essay
  • Essay on About Trigonometry
  • Trigonometry & Astronomy Essay
  • Early Trigonometry Essay
  • Spherical Trigonometry Essay
  • Essay about Right Angled Triangle and Trigonometry

Become a StudyMode Member

Sign Up - It's Free