The Basic Mechanisms of Homeostasis

Only available on StudyMode
  • Download(s) : 54
  • Published : March 21, 2013
Open Document
Text Preview
The Basic Mechanisms of Homeostasis
Overview of homeostasis
The term homeostasis was first coined by Walter Cannon in 1929 to literally mean ‘steady state’. It describes the dynamic equilibrium by which internal constancy is maintained within set limits by regulation and control. There are many examples of homeostatic control throughout the human body and in other living organisms, such as pH, pressure, and temperature.

A concept important to homeostasis is the process of feedback circuits; involving a receptor, an effector, and a control centre. A receptor is responsible for detecting a change in the body, while the effector corrects this. The control centre organises these two together to elicit the response. The most common form of control in homeostasis is known as negative feedback, in which an excess or deficit in a homeostatic system triggers its own regulation. The diagram below illustrates this concept in reference to the control of temperature (Figure 1).

Figure 1 is a simple representation of a rather complicated process. Here, the several types of negative feedback circuits involved in temperature control have been summarised into one. The hypothalamus is a combined receptor and control centre, both recognising extremes of temperature change, and triggering bodily effectors to correct the changes. Figure 1 shows the responses to a decrease in body temperature, which directs organs to increase metabolism, thus causing shivering. Another effect would be causing hair cells on the skin to force up their hairs, creating a trapped layer of air across the body surface. Such effects should then cause the body temperature to rise to the optimal 37°C again, causing feedback to switch the circuit ‘off’. If this does not occur, the circuit will continue to direct effectors to warm the body because the feedback will not be switched ‘off’.

Recent research, however has added another dimension to the accepted definition of homeostasis. Scientists studying circadian rhythms (24-hour bodily cycles) have pointed out that the internal environment does not have completely constant ‘normal’ set point. They have found, for example, that the set point for human body temperature varies over a 24 hour cycle, fluctuating between 36°C and 37°C. As a result of this research, current thinking suggests that while homeostasis controls the ‘minute-by-minute fluctuation in the environment’ , circadian rhythms control the body’s general programming over time.

In this essay, we will concentrate on two examples of homeostasis, one that occurs in humans and one which occurs in plants. Firstly, we will discuss the control of blood glucose levels in mammals, and then will look at the role of plant stomata in regulating water loss.

Example 1: Control of blood glucose levels

The human body has a number of mechanisms in place to regulate the storage and release of molecules for energy. Sometimes, an individual will consume more calories than can be immediately used, so sugars will be stored in the form of glycogen (a polymer of glucose) in liver and muscle cells. Other periods of increased activity may however, require the sudden release of energy, whereby glycogen is initially oxidised from the stores in the liver. Clearly, this is another example of homeostasis and it is outlined in Figure 2.

Two enzymatic hormones are utilised by the body to control the interchange of glucose as an energy molecule and glycogen as a storage molecule. The first, insulin, lowers blood glucose levels by promoting its conversion to glycogen. The second, glucagon, increases glucose levels by allowing glycogen to be phosphorylated. Both of these hormones are produced and released by specialised cells in the pancreas known as Islets of Langerhans. Insulin is released from β-cells, and glucagon is released from α-cells.

Figure 2: Blood glucose control by insulin and glucagon

If the blood glucose level is too high, more insulin and less glucagon is...
tracking img