Without knowing something about differential equations and methods of solving them, it is difficult to appreciate the history of this important branch of mathematics. Further, the development of differential equations is intimately interwoven with the general development of mathematics and cannot be separated from it. Nevertheless, to provide some historical perspective, we indicate here some of the major trends in the history of the subject, and identify the most prominent early contributors. Other historical infor- mation is contained in footnotes scattered throughout the book and in the references listed at the end of the chapter. The subject of differential equations originated in the study of calculus by Isaac Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716) in the seventeenth century. Newton grew up in the English countryside, was educated at Trinity College, Cambridge, and became Lucasian Professor of Mathematics there in 1669. His epochal discoveries of calculus and of the fundamental laws of mechanics date from 1665. They were circulated privately among his friends, but Newton was extremely sensitive to criticism, and did not begin to publish his results until 1687 with the appearance of his most famous book, Philosophiae Naturalis Principia Mathematica. While Newton did relatively little work in differential equations as such, his development of the calculus and elucidation of the basic principles of mechanics provided a basis for their applications in the eighteenth century, most notably by Euler. Newton classified first order differential equations according to the forms dy/dx = f (x), dy/dx = f (y), and dy/dx = f (x,y). For the latter equation he developed a method of solution using infinite series when f (x,y) is a polynomial in x and y. Newton’s active research in mathematics ended in the early 1690s except for the solution of occasional challenge problems and the revision and publication of results obtained much earlier. He was...

...CHAPTER 1
INTRODUCTION TO
DIFFERENTIALEQUATIONS
1
Chapter INTRODUCTION TO
DIFFERENTIAL
1
EQUATIONS
Outline:
1.1
1.2
1.3
1.4
1.5
1.6
Basic Definition
Types of DifferentialEquations
Order of a DifferentialEquation
Degree of a DifferentialEquation
Types of Solutions to a DifferentialEquation
Elimination of Arbitrary...

...CHAPTER 2
FIRST ORDER DIFFERENTIALEQUATIONS
2.1 Separable Variables
2.2 Exact Equations
2.2.1 Equations Reducible to Exact Form.
2.3 Linear Equations
4. Solutions by Substitutions
2.4.1 Homogenous Equations
2.4.2 Bernoulli’s Equation
2.5 Exercises
In this chapter we describe procedures for solving 4 types of differential...

...Doctor Gary Hall
DifferentialEquations
March 2013
DifferentialEquations in Mechanical Engineering
Often times college students question the courses they are required to take and the relevance they have to their intended career. As engineers and scientists we are taught, and even “wired” in a way, to question things through-out our lives. We question the way things work, such as the way the shocks in our car work to give us a smooth...

...MATHEMATICAL METHODS
PARTIAL DIFFERENTIALEQUATIONS
I YEAR B.Tech
By
Mr. Y. Prabhaker Reddy
Asst. Professor of Mathematics
Guru Nanak Engineering College
Ibrahimpatnam, Hyderabad.
SYLLABUS OF MATHEMATICAL METHODS (as per JNTU Hyderabad)
Name of the Unit
Unit-I
Solution of Linear
systems
Unit-II
Eigen values and
Eigen vectors
Name of the Topic
Matrices and Linear system of equations: Elementary row transformations – Rank
–...

...epigraphy, numismatics, monuments Literary sources: Indigenous: Primary and secondary; poetry, scientific literature, literature, literature in regional languages, religious literature. Foreign accounts: Greek, Chinese and Arab writers.
2. Pre-history and Proto-history: Geographical factors; hunting and gathering (paleolithic and mesolithic); Beginning of agriculture (neolithic and chalcolithic).
3. Indus Valley Civilization: Origin, date, extent,...

...6 Systems Represented by Differential and Difference Equations
Recommended Problems
P6.1 Suppose that y 1(t) and y 2(t) both satisfy the homogeneous linear constant-coeffi cient differentialequation (LCCDE)
dy(t) + ay(t) = 0
dt
Show that y 3 (t) = ayi(t) + 3y2 (t), where a and # are any two constants, is also a solution to the homogeneous LCCDE. P6.2 In this problem, we consider the homogeneous LCCDE d 2yt + 3 dy(t) +...

...Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary DifferentialEquations
1.0 Introduction
In mathematics, if y is a function of x, then an equation that involves x, y and one or more derivatives of y with respect to x is called an ordinary differentialequation (ODE). The ODEs which do not have additive solutions are non-linear, and finding the solutions is much more sophisticated...

...DIFFERENTIALEQUATIONS: A SIMPLIFIED APPROACH, 2nd Edition
DIFFERENTIALEQUATIONS PRIMER By: AUSTRIA, Gian Paulo A. ECE / 3, Mapúa Institute of Technology NOTE: THIS PRIMER IS SUBJECT TO COPYRIGHT. IT CANNOT BE REPRODUCED WITHOUT PRIOR PERMISSION FROM THE AUTHOR. DEFINITIONS / TERMINOLOGIES A differentialequation is an equation which involves derivatives and is mathematical models which can be...

6898 Words |
43 Pages

Share this Document

Let your classmates know about this document and more at StudyMode.com

## Share this Document

Let your classmates know about this document and more at StudyMode.com