Edexcel 6664 01 Que 20120524

Only available on StudyMode
  • Topic: Kompakt, Total 6, Total 5
  • Pages : 34 (1135 words )
  • Download(s) : 345
  • Published : September 9, 2012
Open Document
Text Preview
Centre No. Candidate No.
Paper Reference(s)


Paper Reference Signature

6 6 6 4

0 1

Examiner’s use only

Edexcel GCE
Core Mathematics C2
Advanced Subsidiary
Thursday 24 May 2012 – Morning Time: 1 hour 30 minutes

Team Leader’s use only

Question Leave Number Blank

1 2 3 4

Materials required for examination Mathematical Formulae (Pink)

Items included with question papers Nil

5 6 7 8 9

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates
In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates
A booklet ‘Mathematical Formulae and Statistical Tables’ is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates
You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2012 Pearson Education Ltd. Printer’s Log. No.

Turn over

W850/R6664/57570 5/5/5/3






Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 3x)5 giving each term in its simplest form. (4)

Leave blank

___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________...