Preview

Bio 101 Lecture Notes Respiration

Good Essays
Open Document
Open Document
689 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Bio 101 Lecture Notes Respiration
BIO 101 Lecture Notes for Respiration, Fermentation, and Photosynthesis

Respiration

During aerobic respiration, glucose is completely oxidized (all H’s removed) leaving CO2 as an endproduct. The H’s are taken by coenzymes (NAD and FAD) to the electron transport chain. There the energy is drained from the hydrogen electrons and the energy is used to make ATP. The H’s are ultimately accepted by O2 to make H2O as an endproduct.

Respiration occurs in three major stages:

1) Glycolysis – occurs in the cytoplasm for both prokaryotic and eukaryotic cells

• One glucose (6C) is broken into two 3C molecules – 2 pyruvic acids (pyruvate) • One oxidation step produces two molecules of reduced coenzyme – 2NADH • One step produces energy in the form of ATP – 2ATP • The pyruvic acids continue to the next stage – the Krebs Cycle • The 2 NADH proceed to the third stage – ETC • The 2 ATP are available to do cellular work

2) Krebs Cycle – occurs in the cytoplasm for prokaryotic cells and in the matrix of the mitochondria for eukaryotic cells

• Each pyruvic acid is completely oxidized in the Krebs Cycle to yield 3 CO2 • Five oxidation steps produce 4 molecules of reduced NADH and 1 molecule of reduced FADH2 • One step produces energy directly in the form of ATP(1 ATP

• Since glycolysis produces 2 pyruvic acids, the total endproducts of the Krebs cycle produced from the complete oxidation of both pyruvic acids is: 6CO2, 8NADH, 2FADH2, and 2ATP • The 6 CO2 are released as waste • The 8 NADH and 2 FADH2 proceed to the third stage – ETC • The 2 ATP are available for cell work

3) Electron Transport Chain (ETC) – in cell membrane for prokaryotic cells; in cristae of mitochondria for eukaryotic cells

• The high energy electrons taken from glucose by the coenzymes NAD and FAD are passed

You May Also Find These Documents Helpful

  • Better Essays

    GRT1 Task 4

    • 964 Words
    • 4 Pages

    -In order to make ATP (energy), glucose and fructose need to go through glycolysis and enter the Krebs cycle.…

    • 964 Words
    • 4 Pages
    Better Essays
  • Satisfactory Essays

    Biology Summary Guide 7.2

    • 497 Words
    • 2 Pages

    2. In the first of the Krebs Cycle, a two-carbon molecule of acetyl CoA combines with a four-carbon compound, oxaloacetic acid to produce citric acid.…

    • 497 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Krebs Cycle Lab Report

    • 297 Words
    • 2 Pages

    he Krebs Cycle also expressed as: CH3C(=O)C(=O)O− (pyruvate) + HSCoA + NAD+ → CH3C(=O)SCoA (acetyl-CoA) + NADH + CO2 is the main pathway in all aerobic organisms. Basically it’s the way that cells produce energy for itself, but the only issue is it requires the presence of oxygen. In total eight reactions that take place in the mitochondria, and these reactions result in two carbon molecules and oxidizes it into carbon dioxide. Step 1 Citrate synthase bridges to Oxaloacetate substrates which can then bind to Acetyl–CoA’s acetyl group, which drops off the A Co-enzyme. This in turn created citrates for usage later in the Krebs cycle. This six-carbon molecule will be degraded, and biotransformed back into Oxaloacetate.Step 2The citrate isn't…

    • 297 Words
    • 2 Pages
    Good Essays
  • Good Essays

    CoA. The Krebs cycle results in the production of only 4 ATP, but produces a lot of NADH.…

    • 516 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    9.3 After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules…

    • 1458 Words
    • 6 Pages
    Satisfactory Essays
  • Powerful Essays

    What happens during the Krebs Cycle? (Key Concept): During Krebs Cycle, pyruvic acid is broken down into carbon dioxide in a series of energy-extracting reactions.…

    • 837 Words
    • 4 Pages
    Powerful Essays
  • Better Essays

    Cell Energy Worksheet

    • 1063 Words
    • 5 Pages

    The Citric Acid Cycle starts after the glycolysis cycle produces the acetyl CoA compound. The Coenzyme A is removed and the remaining carbon skeleton is attached to another 4-carbon molecule. The new 6-carbon chain releases carbon dioxide. Two ATP’s are produced during this process for each molecule of glucose. The end result of the citric acid cycle is 4 CO molecules, 6 NADH molecules, 2 ATP molecules and 2 FADH2 molecules. The process is part of the conversion of carbs, fats, and proteins into carbon dioxide and water; which is usable energy.…

    • 1063 Words
    • 5 Pages
    Better Essays
  • Good Essays

    During the Krebs cycle: the products of glycolysis are further broken down, generating additional ATP and the high-energy electron carrier NADH…

    • 500 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Stage two the citric acid cycle. The two molecules of pyruvic acid that fuel the remains after glycolysis are not ready yet. The pyruvic acid must be converted to a form the citric acid cycle can use. First each pyruvic acid loses a carbon as CO2. The remaining fuel molecules each with 2 carbons left are called acetic. The oxidation of the fuel generates NADH. Lastly each acetic acid is attached to a molecule called coenzyme A (CoA), an enzyme from the formed from the B vitamin pantothenic acid to form acetyl CoA. The CoA escorts the acetic acid into the first reaction of the citric acid cycle. The CoA is then stripped and recycled.…

    • 398 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    Bio Exam 1

    • 2676 Words
    • 36 Pages

    Identify the step in which Kreb’s or Citric Acid Cycle would most appropiately fit in aerobic cellular respiration.…

    • 2676 Words
    • 36 Pages
    Satisfactory Essays
  • Good Essays

    The Citric Acid Cycle is a series of enzyme-catalysed reactions that take place in the mitochondrial matrix of all aerobic organisms. It involves the oxidation of the acetyl group of acetyl CoA to two molecules of carbon dioxide. Each cycle produces one molecule of ATP by substrate-level phosphorylation, and reduces three molecules of NAD and one molecule of FAD for use in Oxidative Phosphorylation. The cycle is preceded by Glycolysis, which also occurs in anaerobic respiration, and the pyruvate dehydrogenase complex, which occur in the cytoplasm and the mitochondrial matrix respectively. In aerobic respiration, glycolysis breaks down one molecule of glucose and two molecules of pyruvate, and gives a net product…

    • 1383 Words
    • 6 Pages
    Good Essays
  • Better Essays

    Biochemistry-Metabolism

    • 1252 Words
    • 6 Pages

    the citric acid or Krebs cycle and 3) electron transport system. The glycolytic pathway or…

    • 1252 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Cell Work Sheet

    • 850 Words
    • 4 Pages

    This cycle also called the “Krebs cycle”, completes the breakdown of glucose all the way to CO2, one of the waste products off cellular respiration. The enzymes for the citric acid cycle are dissolved in the fluid within mitochondria. Glycolysis and the citric acid cycle generate a small amount of ATP directly. They generate much more ATP indirectly, via redox reactions that transfer electrons from fuel molecules to NAD+, forming NADH.…

    • 850 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Unit two Biology

    • 7492 Words
    • 30 Pages

    CoA + pyruvate (3C) oxidised NAD reduced NAD acetyl CoA (2C) + CO2 Figure 2.6 The link reaction. The Krebs cycle…

    • 7492 Words
    • 30 Pages
    Powerful Essays
  • Powerful Essays

    Cellular respiration is an ATP-producing catabolic process in which the electron receiver is an inorganic molecule. It is the release of energy from organic compounds by chemical oxidation in the mitochondria within each cell. Carbohydrates, proteins, and fats can all be metabolized, but cellular respiration usually involves glucose: C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 Kcal of energy/mole of glucose oxidized. Cellular respiration involves glycolysis, the Krebs cycle, and the electron transport chain. Glycolysis is a catabolic pathway that occurs in the cytosol and partially oxidizes glucose into two pyruvate (3-C). The Krebs cycle occurs in the mitochondria and breaks down a pyruvate (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small amount of ATP by substrate-level phosphorylation and NADH by transferring electrons from substrate to NAD+. The Krebs cycle also produces FADH2 by transferring electrons to FAD. The electron transport chain is located at the inner membrane of the mitochondria and accepts energized electrons from enzymes that are collected during glycolysis and the Krebs cycle, and…

    • 1687 Words
    • 7 Pages
    Powerful Essays